
Web-Scale Workflow

78 	 Published by the IEEE Computer Society	 1089-7801/10/$26.00 © 2010 IEEE� IEEE INTERNET COMPUTING

Editor : M . Br ian Blake • mb7@cse .nd .edu

S ervices computing1 is an emerging paradigm
in which services that humans typically
execute are realized as network-accessible

software applications or Web services. Web
service composition is the ability to integrate
multiple services into higher-level applications.
This technology has seen increased attention in
published works, and researchers have intro-
duced numerous approaches to automate it.2 As
such, current techniques suggest that organi-
zations will acquire related tools and perform
integration activities locally. The knowledge
and expertise to perform composition activi-
ties is hard to attain and equally difficult to
maintain. Given services’ proliferation as well
as their format and usage diversity, traditional
approaches seem rigid and not easily adoptable;
such approaches assume that all the information
required to conduct service composition, such as
service portfolios, data schemas, or ontologies,
are available locally to a given user. Thus, the
knowledge obtained during service composition
isn’t stored, disseminated, or shared. Because
service composition is a knowledge-intensive
task, leveraging the services metadata, I/O data
schema, and, particularly, experience embed-
ded in already-built workflows can significantly
improve both performance and user experience.
To be competitive, organizations must be able
to transfer and reuse knowledge attained after
each composition scenario.

Current challenges in automating service

composition neglect another important para-
digm in which a third-party entity can provide
a service on a service provider’s behalf — soft-
ware as a service (SaaS).3 Centralizing composi-
tion activities into a first-class service alleviates
the previously mentioned challenges. SaaS
would provide a solution for two scenarios, in
particular. One occurs when an organization is
searching for a particular software capability to
interact within an established business process.
The organization might submit an incomplete
workflow specification and request a capabil-
ity that can complete the process. In the second
scenario, multiple organizations might have
only written specifications. Two organizations
could submit relevant application specifications
and request potential overlap in their service
offerings. The former scenario suggests the use
of a third-party organization to integrate soft-
ware, whereas the latter requires text manipu-
lation and matching techniques to search for
common specifications. Both scenarios require
an SaaS customization entitled composition as
a service (CaaS).

A Protocol for Reusing
Historical Composition Experiences
Florian Rosenberg and his colleagues first
introduced the idea of CaaS4 in a paper in
which they present a composition service for
avoiding the need to install a client-side com-
position infrastructure. The framework focuses

Composition as a Service

M. Brian Blake • University of Notre Dame
Wei Tan • University of Chicago
Florian Rosenberg • CSIRO ICT Centre, Australia

Understanding reusable software and assets within and among multiple

organizations’ system infrastructures can be challenging. IT systems might be

widely distributed, and interconnections can be complicated. Ever-evolving

computing technologies reduce an organization’s in-house expertise for reusing

software, even when leveraging software systems within its own firewalls. As

such, the on-demand integration of software and capabilities might benefit

from an outsourcing paradigm — described here as composition as a service.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27, 2010 at 19:08 from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2010� 79

Composition as a Service

mainly on quality-of-service (QoS)-
aware composition using a domain-
specific language. Here, we extend
the scenario to a broader scope to
cover both service and capability
composition. Considering a stake-
holder who needs to find and con-
sume a required capability within
its own offerings, the input to CaaS
might be an incomplete business
process or a general description of
those offerings. A CaaS capability
could acquire the previously men-
tioned artifacts as input and sug-
gest a specific service workflow (in
terms of software) or related appli-
cation specifications (in terms of
written specifications). Stakeholders
can report the effectiveness of the
recommendations to the CaaS capa-
bility; organizations can maintain
a knowledge base (KB) to facilitate
reusing previously used software,
specifications, and composition rou-
tines in the future. Figure 1 shows
this interaction. Although the fig-
ure suggests one stakeholder, CaaS
can operate explicitly on the input
that multiple stakeholders provide.
Furthermore, the CaaS approach
can learn from historical composi-
tion information to augment future
recommendations.

CaaS for
Software Composition
Current approaches to service com-
position are generally used in
isolated, standalone applications.
Knowledge can neither accumulate
nor be shared among people who
might undertake similar composi-
tion tasks. Web services are avail-
able in the business domain — for
example, Google (http://code.google.
com/apis/ajax/) and Amazon (http://
aws.amazon.com) Web services —
as well as scientific domains, such
as Web services from the European
Bioinformatics Institute (www.ebi.
ac.uk/Tools/webservices/), the US
National Center for Biotechnology
Information (NCBI; www.ncbi.nlm.

nih.gov/entrez/query/static/esoap
_help.html), the Cancer Bioinformat-
ics Grid (caBIG) sponsored by the
US National Cancer Institute (see
http://cagr id-por tal.nci.nih.gov),
and bioCatalog (www.biocatalogue.
org), which maintains a comprehen-
sive catalog of biological Web ser-
vices. CaaS could be instrumental in
recommending where services can
be integrated across the previously
mentioned domains.

In short, CaaS is a service that
mediates communication between
multiple clients. It provides compo-
sition recommendations to stake-
holders and collects feedback from
them. At the client side, users will
have to obtain a CaaS plug-in to
the modeling tool of their inte-
grated development environment
(IDE). This plug-in acts on the user’s
behalf to detect his or her require-
ment and forward it in an abstract
and client-independent format to
the CaaS service. For example, if a
user adds a <receive>, a <reply>,
or an <invoke> activity in a Busi-
ness Process Execution Language
(BPEL) process, this could provide
an input query to the CaaS service.
When CaaS returns a list of recom-
mendations, the plug-in translates it
back to a format the user or client
can comprehend. These suggestions
might include a completed work-
flow, additive fragments, or sugges-
tions on modifying current workflow.

Users can choose among multiple
recommendations and optionally
send the selection with other feed-
back to CaaS.

The CaaS service itself relies on a
KB to aggregate knowledge and pro-
vide suggestions. The KB manages
four categories of information:

•	 Basic service portfolio. The ser-
vice registry, indexing services,
and individual services end points
(that is, Web Service Description
Language [WSDL] files) contain
signatures of services and basic
information on how to use them.

•	 Enhanced service data. Some
services have additional meta-
data on them, such as semantic
annotation on data types or ser-
vice usage information given in
OWL-S (www.daml.org/owl-s/).

•	 Workflow repository. Certain
application domains — for exam-
ple, an enterprise or a bioinfor-
matics research group — might
have repositories of workflows
already built and used. These are
good reference cases for others
who deal with similar business or
scientific experiments.

•	 User portfolio and feedback.
A user portfolio contains user
information (identity, institution,
and so on) and feedback on using
CaaS, which helps CaaS provide
more personalized suggestions.
For example, given user feedback

Stakeholder

Incomplete
work�ow

request composition/
collaboration

CaaS Knowledge
base (KB)

Requirement
speci�cation

query KB

give recommendation

report feedback

update

return relevant suggestion

process suggestion

Figure 1. Abstract interaction when accessing historic composition information.
Although this figure suggests one stakeholder, composition as a service (CaaS)
can operate explicitly on the input multiple stakeholders provide.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27, 2010 at 19:08 from IEEE Xplore. Restrictions apply.

Web-Scale Workflow

80 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

on a selection from a list of Blast
services, CaaS might conclude
that users from the University of
Chicago prefer NCBI-hosted Blast
services, and can use this pref-
erence setting on suggestions to
users from the same group.

In the next section we’ll discuss
a real case in which the idea of CaaS
is used to facilitate the composition
of scientific workflows in biomedical
research.

A Case Study from caGrid
Currently, we’re working on imple-
menting CaaS in the context of the
caGrid (which is the aforementioned
caBIG’s grid infrastructure) workflow
system (see Figure 2).5 The caGrid
workflow system was developed based
on the Taverna workbench (http://
taverna.sourceforge.net) to orchestrate
caBIG grid services.

The application framework is
divided into a client and a service

side. At the client side, caGrid users
model workflows in the Taverna
workbench. They employ abstract
data and service elements to model
the uncertain part of the workflow
that they aren’t quite clear about
and ultimately require assistance
with. Besides those abstract ele-
ments, a workflow also contains
concrete services and data that
users already know and want. A
Taverna plug-in inside the work-
bench communicates with the CaaS
service while issuing assistance
requests, retrieving suggestions,
and giving feedback, using SOAP
or Representational State Transfer
(RESTful) interfaces.

At the service side, the CaaS ser-
vice’s core functional part is called
a service net, which acts as an index
of all the metadata, services, and
workflows. The nodes in a service
net are operations or data elements,
and the edges between them are
classified into three categories:

•	 data-data edges represent data
relations defined in the WSDL
schema and caGrid metadata;

•	 operation-data edges represent
service operations’ I/O data; and

•	 operation-operation edges repre-
sent connections between opera-
tions in existing workflows.

The KB contains a collection of
caGrid services, caGrid metadata
(a shared vocabulary and its anno-
tations on caGrid services), and a
caGrid workflow repository hosted
at the myExperiment (www.my
experiment.org) Web site.

The CaaS service inspects the
abstract workflow users submit from
the workbench and finds similar
graphs, or skeletons, in the service
net. It then uses a skeleton to query
the KB to get more data (such as a
data node schema or operation node
URL), combines them with skeletons
to produce meaningful recommen-
dations, and then returns them to
the client. When any update occurs
in the KB, the service net must be
updated accordingly.

CaaS for Written
Specification Aggregation
Another implementation of the CaaS
architecture is the ability to search
for correlations in multiple orga-
nizations’ applications and devel
opmental specifications (that is,
written specifications). Imagine
that multiple organizations exist
within the same domain, initiating
new software development projects.
An initial step in these projects is
to elicit requirements for the new
applications. Within an organization
or across multiple organizations,
overlap across these requirements
documents is difficult to ascer-
tain. Organizations can use CaaS
to search for similar requirements
across multiple requirements docu-
ments. This approach is beneficial in
that architects and developers can
identify redundancies in software

Taverna workbench

Query

Update

CaaS service Knowledge base

Client side

Service side SOAP/RESTful interface

caGrid
services

caGrid
metadata

Figure 2. Implementation of composition as a service (CaaS) in caGrid. At the
client side, users model workflows in the Taverna workbench, including the
part that they aren’t quite clear about and ultimately require assistance with.
A Taverna plug-in inside the workbench communicates with the CaaS service,
issuing assistance requests, retrieving suggestions, and giving feedback, using
SOAP or Representational State Transfer (RESTful) interfaces.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27, 2010 at 19:08 from IEEE Xplore. Restrictions apply.

JANUARY/FEBRUARY 2010� 81

Composition as a Service

development activities early in the
life cycle. Although the scenario
and supporting application here
identify requirements documents,
CaaS can leverage any text-based
description in this approach. Fig-
ure 3 illustrates an application that
can correlate software requirements
specification documents in search
of shared capabilities. The Venn
diagram represents organizations’
boundaries. The overlap between the
circles demonstrates where signifi-
cant overlap exists between multiple
organizations and indicates a poten-
tial for collaboration or software
reuse. The smaller dots represent
capabilities inferred from words and
phrases used in the requirements
documents. Dots in the overlap of
the Venn diagram represent poten-
tial shared capabilities.

CaaS Research Challenges
Increased adoption of the SaaS
paradigm and the proliferation of
available Web services require new
paradigms that rapidly compose new
software systems from existing arti-
facts. The proposed CaaS approach
attempts to combine collaborative
software engineering principles with
recent advances in service-oriented
computing. Thus, it poses a variety
of research challenges.

Shared Artifact Repository
The first challenge is the provision-
ing of a lightweight approach to build
an extensible and shared artifact
repository — for example, consist-
ing of a KB for managing common
vocabulary, workflow templates, and
service descriptions. Additionally,
relationships between these arti-
facts, user information, and their
requirements must be managed and
automatically inferred from exist-
ing knowledge. Low-cost and rapid
accessibility in a Web 2.0 manner
should enable easier adoption and
integration into existing tools (such
as IDEs).

Context-Awareness
In CaaS, the importance of con-
text is manifold — including users’
incomplete workflows and workflow
requirements as well as their identi-
ties, service preferences, and usage
information. Furthermore, CaaS
can leverage social network infor-
mation to gather additional context
about users’ behavior. It’s crucial to
provide mechanisms that infer how
CaaS has obtained context informa-
tion to make its service composition
approach more intelligent and sensi-
tive to users’ requirements.

Feedback,
Recommendation, and Trust
Feedback mechanisms are important
means for incorporating service and
workflow ratings into the KB. This lets
the CaaS approach devise service or
workflow recommendations for users
when combined with their context
information. An important aspect
for feedback and recommendation is
trust to ensure that feedback can’t be
forged or incorrect such that CaaS
provides false recommendations.

Visualization
Different ways to visualize and
enhance the user experience when
using CaaS can streamline require-
ments elicitation among different
organizations or illustrate common
or redundant information (such as
services or incomplete workflows).
Intelligent methods for visualizing
these artifacts can help reduce the
overall workflow development time
and increase developer satisfaction.

C urrent outsourced software
engineering revolves around

rapid application development and
software maintenance activities.
CaaS suggests that the next evolu-
tion will let organizations manage
systems integration in much the
same vein. �

Acknowledgments
M. Brian Blake thanks Alex Yale-Loehr and

Ian Schlesinger for their development activi-

ties with respect to the requirements tool

representing the composition-as-a-service

(CaaS) paradigm. Wei Tan thanks Ian Foster,

Found only in NASA

Found only in DPU
�ight software

Figure 3. A composition-as-a-service (CaaS) requirements aggregation
approach. The tool in this screenshot uses a Venn diagram to show similar
requirements between two different organizations. Requirements at the
intersection of the diagram represent requirements predicted to be shared by
the two organizations.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27, 2010 at 19:08 from IEEE Xplore. Restrictions apply.

Web-Scale Workflow

82 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

Ravi Madduri, and Dinanath Sulakhe for the

constructive discussions on CaaS in caGrid.

Florian Rosenberg thanks Anton Michlmayr,

Philipp Leitner, and Predrag Celikovic for

their fruitful discussions on CaaS and its

implementation for quality-of-service-aware

service composition.

References
1.	 L.-J. Zhang, J. Zhang, and H. Cai, Ser-

vices Computing, Springer, 2007.

2.	 W. Schreiner and S. Dustdar, “A Survey

on Web Services Composition,” Int’l J.

Web and Grid Services, vol. 1, no. 1, 2005,

pp. 1–30.

3.	 M.P. Papazoglou and G. Georgakapoulos,

“Service-Oriented Computing,” Comm.

ACM, vol. 46, no. 10, 2003, pp. 24–28.

4.	 F. Rosenberg et al., “Towards Composi-

tion as a Service — A Quality-of-Service-

Driven Approach,” Proc. 25th Int’l Conf.

Data Eng. (ICDE 2009), IEEE CS Press,

2009, pp. 1733–1740.

5.	 W. Tan, I. Foster, and R. Madduri, “Com-

bining the Power of Taverna and caGrid:

Scientific Workflows that Enable Web-

Scale Collaboration,” IEEE Internet Com-

puting, vol. 12, no. 6, 2008, pp. 61–68.

M. Brian Blake is a professor in the Depart-

ment of Computer Science and Engi-

neering, College of Engineering, at the

University of Notre Dame. He conducts

applied research in the areas of service-

oriented computing and enterprise inte-

gration in collaboration with various

government and industry organiza-

tions. Blake has a PhD in information

and software engineering from George

Mason University. He’s a senior mem-

ber of the IEEE. Contact him at m.brian.

blake@nd.edu.

Wei Tan is a research staff member in the

Computation Institute at the University

of Chicago and Argonne National Labo-

ratory. His research interests include

scientific workflow, service-oriented com-

puting, and Petri nets. He’s now involved

in multiple health-informatics-related

projects, providing scientific workflow

solutions for domain users. Tan has a PhD

in automation engineering from Tsinghua

University, China. Contact him at wtan@

mcs.anl.gov.

Florian Rosenberg is a research scientist at the

CSIRO ICT Centre in Australia. His general

research interests include service-ori-

ented computing and software engineer-

ing, particularly all aspects related to

quality-of-service-aware service compo-

sition and adaptation. Rosenberg has a

PhD in computer science from the Vienna

University of Technology. Contact him at

florian.rosenberg@csiro.au.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Advertising Sales
Representatives

Recruitment:

Mid Atlantic
Lisa Rinaldo
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: lr.ieeemedia@
ieee.org

New England
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@
ieee.org

Southeast
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Midwest/Southwest
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@
ieee.org

Northwest/Southern CA
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe
Heleen Vodegel
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@
impressmedia.com

Product:

US East
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@
ieee.org

US Central
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@ieee.org

US West
Lynne Stickrod
Phone: +1 415 931 9782
Fax: +1 415 931 9782
Email: ls.ieeemedia@ieee.org

Europe
Sven Anacker
Phone: +49 202 27169 11
Fax: +49 202 27169 20
Email: sanacker@
intermediapartners.de

Advertiser� Page
Cisco� 9

Advertising Personnel
Marion Delaney
IEEE Media, Advertising Dir.
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Sr. Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
Sr. Business Development Mgr.
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

ADVERTISER INFORMATION • JANUARY/FEBRUARY 2010

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27, 2010 at 19:08 from IEEE Xplore. Restrictions apply.

