
Towards a Distributed Service-Oriented Business Rules System

Florian Rosenberg, Schahram Dustdar
Distributed Systems Group, Information Systems Institute

Vienna University of Technology
1040 Vienna, Argentinierstrasse 8/184-1, Austria

{rosenberg, dustdar}@infosys.tuwien.ac.at

Abstract

Businesses are changing rapidly and organizations tend
to act worldwide and are increasingly becoming distributed
over the continents. As a consequence, distributed software
systems have to keep track with rapidly changing markets.
Business rules provide support for capturing some knowl-
edge that changes frequently. Current business rule sys-
tems manage and execute business rules, however, typically
lack support for increasingly distributed software systems,
in particular, with respect to flexibility and reuse of busi-
ness rules across distributed rule engines. In this paper we
propose a service-oriented distributed business rules system
that manages and deploys business rules to various business
rule engines. Furthermore, we present the design and some
implementation aspects of a service-oriented business rules
system based on WS-Coordination. The system supports
management and deployment of business rules to various
business rules engines. Furthermore, we present a frame-
work that unifies the access to several heterogeneous busi-
ness rules engines, and we propose a solution that automat-
ically generates and provisions Web services for executing
business rules managed by a business rule engine.

Keywords: Business Rules, Web Services, Automated
Web Service Generation, Business Rules Deployment

1. Introduction

Rapidly increasing globalization and the resulting distri-
bution of companies poses several new challenges regarding
architecture and implementation of those distributed sys-
tems. One of the key factors of successfully building and
running a distributed software system is the ease of making
changes to the system without recompiling and redeploying
it. The market changes quite quickly, therefore, software
systems need to keep track with these changes. Business

rules [21, 22] can provide a much more flexible solution for
making changes to the business applications by adapting
the external rules. Externalizing the rules from the exist-
ing business logic is a complex task [24], but it offers the
flexibility that is needed for rapidly making such changes.
In the area of business rules, there is currently no standard
technology for representing and executing rules stored in
different knowledge bases. Moreover, no protocols or tech-
nologies exist which allow a remote execution, deployment
or monitoring of business rules. These facts pose some ad-
ditional challenges for using business rules in distributed
environments.

In recent years, the service-oriented architectures (SOA)
and especially Web services [1], as an established technol-
ogy for implementing SOA, gained a lot of attraction. Stan-
dard interfaces (WSDL) and protocols (SOAP) for describ-
ing and invoking Web services, and the loose-coupling of
these services are important characteristics that lead to more
interoperable distributed systems. Therefore, we have in-
vestigated the use of SOA for building a distributed business
rules system.

The contribution of this paper is threefold: (1) We devel-
oped a distributed architecture for managing and deploying
business rules at several rule engines by using a distributed
coordination model based on WS-Coordination [2]. (2) We
allow to use heterogeneous business rules engines by unify-
ing the access to the rules by introducing a Business Rules
Broker. (3) We propose a solution, on how to expose busi-
ness rules implemented in a business rules engine, to be in-
voked as Web services to allow loosely-coupled integration
into business applications.

The paper is organized as follows: In Section 2, the ba-
sic concepts of business rules and rule engines, including an
example, are presented. Section 3 motivates our approach
by depicting an example of the telecommunication sector to
show possible scenarios of the proposed approach. The de-
sign of our distributed approach is presented in Section 4.
In Section 5, we present our coordination protocol to suc-
cessfully manage the distribution and deployment of busi-

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

ness rules. Section 6 discusses some of the related work
and Section 7 concludes this work and presents some future
work.

2. Background

Business rules have proven to be a valuable technology
when modeling rules as separate entities that govern ones
business. Such rules can then be (re)used throughout dif-
ferent enterprise applications by querying a business rule
engine to execute a set of rules. The Business Rules Group
[21] defines a business rule as “a statement that defines and
constraints some aspects of business. It is intended to as-
sert business structure or to control or influence the behav-
ior of the business. The business rules which concern the
project are atomic, that is, they cannot be broken down fur-
ther.” Business rules are typically executed by so-called
business rules engines, software components implementing
algorithms (e.g., RETE [9]) for executing declarative rules.

In literature, different types of business rules have
emerged. A good classification is given in [22] or [23].
Mainly, these types include integrity rules or constraint
rules, derivation rules and reaction rules. Integrity rules
specify assertions or conditions that have to be satisfied in
all stages of a system. Derivation or deduction rules spec-
ify knowledge that is derived from other knowledge by us-
ing inference of mathematical calculation. Reaction or ac-
tion rules specify event-condition-action rules or production
rules (if-then statements).

Typically, existing business rules engines do not support
all these different rule types as described above. The sup-
port for different rule types depends exclusively on the rule
engine. Most rules engines support only reaction rules (in
form of if-then rules). Derivation and integrity rules
have to be modeled appropriately in form of reaction rules.

In Listing 1, we present an example of possible rules for
the telecommunication sector:

<ruleset name="CellPhoneRegistration">
<parameter name="cust" type="Customer"/>
<parameter name="service" type="ServiceDescription"/>
<rule>

<condition>cust.regDate >= 1.8.2005</condition>
<condition>cust.regDate <= 1.9.2005</condition>
<action>

service.rate = rate * 0.90
service.freeSMS += 100
service.addOn += "GPRS"

</action>
</rule>
<rule>

<condition>cust.sex == female</condition>
<condition>

hasBirthDayInNextToWeeksAfterRegistration(cust)
</condition>
<action>sendFlowersToCustomer(cust);</action>

</rule>
</ruleset>

Listing 1. Customer Registration Rules for a
Cell Phone Service

In this example, the rules are specified in a high level
domain-specific language (which is supported, for example,
by using Drools [8]). These rules can be invoked by any
business component (similar to database calls) via a special
API. In this example, the rules are executed by the business
application when a new customer is registered. The first rule
implements a typical rule for a marketing campaign. When
the customer registers between August, 1st and September,
1st, she gets 10% discount, 100 free SMS and GPRS as an
add-on. The second rule states, if the customer is female
and has birthday in the next two weeks, flowers should be
sent to her home.

The usefulness of business rules becomes even more ev-
ident when considering the following scenario, which hap-
pens daily in the telecommunication sector: A customer
wants to buy a new mobile phone with a bundle of services
(e.g., GPRS, UMTS, WLAN access, etc). The price of each
bundle varies, depending on the services ordered by the cus-
tomers. All the possible bundle configurations, the calcula-
tion of prices and the resolution of conflicts in case two or
more services cannot be in the same bundle, can easily be
modeled by using condition-action rules.

Based on these examples, we can see the flexibility and
the ease of making changes to such rules or adding new or
existing ones without requiring changes to the business ap-
plication, thus reducing and easing software maintenance.

3. Motivating Example

We motivate our distributed approach by examining a
distributed software architecture of a telecommunication
company. Typically, telecommunication companies oper-
ate in multiple countries, often due to buy-outs of competi-
tors or mergers of multiple companies. The allocation of
rights and duties among different locations can become a
challenge, especially when the software infrastructure does
not support the administration and management of the rights
and duties.

In Figure 1, a possible (abstracted) scenario of such a dis-
tributed enterprise and its computing infrastructure is pre-
sented. Let us assume, we have a telecommunication com-
pany operating at three different locations. The headquarter
of the company is in location A, location B and C are in
different countries. Each location basically has the same
software service infrastructure, including different rule en-
gines, to support the separation and externalization of busi-
ness rules from the business logic. The separation of busi-
ness logic and rules has direct impact on the flexibility of
the software system regarding the time needed for changes.
In most cases, only the rules need to be changed, so there is

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

Location C

Business
Components DB

Business Rule
Engine

Location B

Business
Components DB

Business Rule
Engine

Location A - Headquarter

Business
Components DB

Business Rule
Engine

Figure 1. Distributed Business Rules Scenario

no need to recompile and redeploy the software in contrast
to “implicit” rules embedded directly in the source code of
the business logic.

In this scenario, we assume, based on company regula-
tions, that the administration of the company’s universally
valid business rules is only performed by the headquarter
and all other locations have to use them. All other loca-
tions may additionally need different rules (e.g., current lo-
cation specific marketing campaigns), therefore, each loca-
tion may additionally specify their customized rules differ-
ent from the other locations. Due to the fact that business
rules change quite often, the mixture of custom business
rules for each location (authored by local staff) and com-
mon business rules (authored by staff in the headquarter)
is crucial. It is a question of scalability, if, for example,
all locations access the business rules engine at location A
for evaluating the rules common to all locations. Typically,
business applications frequently execute rules (at least as
often as database calls) to perform their tasks, as a con-
sequence, the performance of the business rules execution
and, hence, the execution of the application itself would de-
crease rapidly. A better solution would be the deployment
of business rules to the rule engine that is running at the lo-
cation where the business applications need them. All busi-
ness rules engines we analyzed, do not have the possibility
to be queried or accessed remotely, neither do they support
a remote deployment of rules.

This leads us to the question, how to deploy such rules
to all the locations that need these rules for their daily oper-
ations? Furthermore, how to achieve such a deployment
without any downtime of the system or the business ap-
plications? The architecture, we propose in the following
paragraphs provides a solution framework to the aforemen-
tioned issues.

4. Design of a Distributed Business Rules Ap-
proach

In this section, we introduce the main design issues for a
distributed service-oriented business rule management sys-
tem. Firstly, we briefly introduce — for the sake of com-
pleteness — an integral part of the architecture, the Business
Rules Broker developed in [18]. Secondly, the main compo-
nents of the overall architecture, as depicted in Figure 4, are
outlined, followed by a detailed discussion of these compo-
nents.

4.1. Business Rules Broker Architecture

Based on the paradigm shift from object and component-
based computing to service-oriented computing, new chal-
lenges arise also for business rules and their execution in
various rule engines, tackled by offering business rules as
loosely-coupled Web services. Previously [17, 18], we have
developed a framework to encapsulate the heterogeneity
of different business rules systems and representation lan-
guages. We have designed and implemented some addi-
tional software layers to abstract from specific rule engine
features and provide a common interface for executing busi-
ness rules. The architecture of our approach is depicted in
Figure 2.

Our approach is to integrate several different heteroge-
neous business rules engines in one common API, the Busi-
ness Rules Broker Interface, by using a plugin-based ap-
proach. Each rule engine that is connected to our broker
can have numerous rule sets where each is uniquely iden-
tified by a URI (Uniform Resource Identifier). Typically,
different domain-specific applications have their own rule
(or knowledge) bases representing a collection of rule sets.

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

Web Service Layer

Business Rules Broker Interface

Rule Engine
Adapter 1

Rule Engine
Adapter 2

Rule Engine 1 Rule Engine 2

Rule
Base 1

Rule
Base 2

Rule Base 3

Figure 2. Business Rules Broker Architecture

A rule set is a grouping of rules that is needed to achieve
a task (cf. the rules in Listing 1). An application typ-
ically consists of a large number of rules sets, which it-
self contains various atomic rules. Querying the broker
is performed by invoking the executeRules(in uri,
in parameters) method, where the uri identifies the
rule set to execute and the parameters, containing the
business objects needed by the rule engine to execute the
rules on this data (c.f., the ServiceDescription and
Customer object from Listing 1). These parameters are
then returned back as a result, depending on the concrete
rule implementation whether the business objects where
changed during execution of the rules. When using the bro-
ker to execute business rules, dependency constraints be-
tween the rule set and its executing rule engine are resolved
due to the use of a URI to identify a certain rule set. On ex-
ecution of rules, the broker internally maps the rule engine
(provided as a plugin to the broker) to the URIs identifying
the correct rule set that has to be executed.

The second major part of the Business Rules Broker con-
cerns dynamic provisioning of Web services for invoking
business rules by using the aforementioned Business Rules
Broker. We refer to such Web services as Rule Web ser-
vices. Thus, we need a mechanism to automatically gener-
ate and deploy such Rule Web services. Each business rules
broker can have several heterogeneous business rules en-
gines plugged-in, where each engine uses a different XML-
based representation for storing the rules. Therefore, we
introduced a Web Service Rule Interface Descriptor (WS-
RID) [18], which is used to describe the Rule Web ser-
vices that need to be generated. The WSRID encodes all

the data needed by the Web service code generator. This
includes: service names, service operations, operation pa-
rameters and the URIs identifying the rule sets that con-
tain the rules. The process of generating the Rule Web
services is shown in Figure 3. An XSLT transformator is
used to transform the WSRID into a special XML repre-
sentation for the WebServiceCodeGenerator. This
code generator then generates the Rule Web services as
specified by the WSRID. After that, the source code is
ready for compilation and deployment to various applica-
tion servers which support Web services. This is done by
the ServiceDeployer component.

Web Service
Rule Interface

Descriptor

Transformator

Code
Generator

Input

Web Service
Code Generator

Rule Web
Service A

Rule Web
Service B

Rule Web
Service C

Service
Deployer

Application
Server

Figure 3. Web Service Generation Process

When applying our approach to the rules from
our example as depicted in Listing 1, a Web service
with the name CustomerRegistrationService
(specified in the WSRID), with one operation named
cellPhoneRegistration(Customer c,
ServiceDecription s) is generated. It is also
possible to generate a service with multiple operations
where each operation is using a different rule engine —
connected to the broker — to execute the rules. The
generated Web services can then easily be integrated in
every application which needs to invoke these rules.

4.2. Distribution Approach

The aforementioned Business Rules Broker architecture
is only one major part for realizing a distributed business
rules approach. The distributed architecture is completely
based on Web service technologies [1]. The design is based
on a service-oriented architecture (SOA), thus, it leverages
loosely-coupling of the different components in the system.

Our distributed system consists of several nodes (ma-
chines), each offering a set of software services. In our con-
figuration, we assume that every component is running on
its own node, but it does not necessarily have to be the case.

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

Rules Broker Node

Business
Rules
Broker

Coordination Node

Rules
Broker

Coordinator

Deployment Node

Rule Web
Service

Container

UDDI
Registry

Figure 4. Architectural Approach

A number of components can also be hosted on the same
node.

Figure 4 depicts the architecture of our system with the
minimal setup. This means that each node is only available
once. In larger environments each node is typically avail-
able multiple times to achieve high availability and maxi-
mum scalability. The minimal setup consists of a Rules Bro-
ker Node, a Coordination Node, a Deployment Node and a
UDDI registry. We discuss a more sophisticated setup after
going through each component of the architecture.

Rules Broker Node. Each Rules Broker Node hosts 1. . . n
of the aforementioned Business Rules Brokers, referred to
as RBi (where i is the number identifying the node in
case more than one are available). As described in Sec-
tion 4.1, each broker can have a certain number of rule en-
gines plugged-in. Each rule engine manages its local set
of business rules, where each set is identified by an URI.
The Business Rules Broker itself has a Web service layer
which is used by the automatically generated and provi-
sioned Rule Web services to execute rules via the available
executeRules operation.

Besides executing business rules, an RBi has to manage
its deployed rule sets. In a typical development process, the
business rule author creates and tests the business rules on
a testing system. Then, the rules are deployed on a pro-
duction system, which is in this case one of the RBi nodes
in the distributed system. Rules are deployed by using the
DeployRules operation, where the XML-based rules are
encoded in the input message of the operation. The received
business rules are, first of all, deployed locally to a con-
crete rule engine connected to the broker as a plugin. Sec-
ondly, on deployment of new rules, it is possible to specify

a deployment policy, which regulates the distribution of the
rules to other RBi. The RBi which initially receives the
rules to be deployed acts as a “master” and forwards the
rules to other RBi according to the deployment policy. For
instance, in our telecommunication example from Figure 1
it is possible that the author of the rules in the headquar-
ter specifies a policy which allows to deploy a set of rules
from RBi in the headquarter only to location B and not to
location C.

After the deployment of the rules to certain RBi (regu-
lated by the aforementioned policy), each RBi initiates the
coordinated generation and deployment of the Rule Web
services for executing the recently deployed business rules
as Web services. The nodes involved in the coordinated de-
ployment of the Rule Web services are explained in the next
paragraphs.

Deployment Node. A deployment node hosts 1. . . n Rules
Web Service Containers RWSCi , which listen for deploy-
ment messages received by one or more RBi. A deploy-
ment message contains the information which Web ser-
vices have to be generated and deployed. All the in-
formation is available in the WSRID as described above.
For the generation of the Web service code we use
the WebServiceCodeGenerator service, already de-
picted in Figure 3. Furthermore, we have adopted a con-
ventional Web service environment (Tomcat + Axis in our
prototype) by adding a ServiceDeployer service. This
service that takes the generated Rule Web service code,
compiles it and creates a deployment package to success-
fully provision the automatically created Rule Web services.
After the deployment of the newly created services, they are
registered at the UDDI registry, thus, external applications

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

which want to use business rules to facilitate their tasks can
immediately use the created services.

Coordination Node. The third component is the Rules
Broker Coordinator RBCi hosted at a coordination node.
The RBCi is responsible for coordinating the deployment
among a set of rules broker nodes RBi and one or more
RWSCi to handle the correct deployment of new rules fol-
lowed by the deployment of the Web services for executing
the former deployed rules. Coordinating the deployment of
business rules is required when multiple RBi are available
in a deployment scenario to guarantee that all rules and the
resulting Rule Web services are generated successfully. For
example, the headquarter specifies new business rules for
all locations, therefore, the deployment to location B and
C needs to be coordinated among the rules brokers and the
Web service containers, as described below. Furthermore,
handling priorities and conflicts of different rules (in case
the local ones are newer than the received ones) and man-
aging consistency or failures in the deployment process are
also the task of the coordinator. Since we use a distributed
coordination model [1], typically multiple RBCi with var-
ious RBi exist. We use the WS-Coordination [2] as basic
framework to handle the coordination activities among the
different components. Therefore, we developed a HotDe-
ployment protocol on top of WS-Coordination to generate
a reliable mechanism for the deployment of the business
rules. We describe this protocol in Section 5.

UDDI Registry. For publishing the Rule Web services,
a central UDDI registry is used. Our approach uses the
registry to store the endpoints of the available RBCi and
RWSCi. Furthermore, when a new Rule Web service is
generated and deployed at a specific RWSCi by using the
ServiceDeployer, the endpoint of the dynamically cre-
ated Rule Web service is added to the UDDI registry to al-
low other business applications or services to find it.

4.3. Motivating Example Revisited – Service Inter-
actions and Deployment

After the introduction of the distributed architecture and
the different components, we use a more sophisticated setup
of our example introduced in Section 3 to explain the inter-
actions of the nodes and the deployment of new rules and
their corresponding Rule Web services to various business
rules engines.

In Figure 5, we have again depicted our telecommuni-
cation example setup but now consisting only of two lo-
cations. Location A, the headquarter, acts as a “master”,
which means that the rules are initially deployed to this lo-
cation by using a deployment tool, and based on the deploy-
ment policies, RB1 is then responsible for the deployment

of the rules to the other nodes. Location A consists of one
rule broker RB1 and two Web service containers, RWSC1 1

and RWSC1 2 to achieve a better load balancing of the Rule
Web services. Although it is not strictly enforced by our
approach, we use a distributed coordination model for man-
aging the deployment, thus, we have more the one coor-
dinator, in this case RBC1 1 and RBC1 2. In location B,
we have one rules broker RB2, one Web service container
RWSC2 and two coordinators, RBC2 1 and RBC2 2.

The deployment process starts when the rule author cre-
ates a set of new business rules by using a rule editor. In
this scenario, a new set of customer registration rules for
cell phones, as depicted in Section 2 and 3, should be de-
ployed. After testing the new rules, the deployment tool is
used to deploy the newly created rules to RB1 by invok-
ing the DeployRules operation of RB1 (message (1) in
Figure 5). The input message of RB1 consists of the XML
encoded business rules including some metadata (URI of
the rule engine, name of the rule set, description, version,
etc.). It is also possible to send more than one rule set in the
deployment message. Additionally, the deployment mes-
sage contains a deployment policy specifying the endpoint
of further RBi which should deploy these rules. In our ex-
ample, according to the received deployment policy, RB1

has to forward the deployment message to RB2 (message
(2) in Figure 5).

When receiving the DeployRules message, RB1 and
subsequently RB2 perform a lookup in the UDDI registry
(not shown in Figure 5) to find RBC1 1 and RBC2 1 for
coordinating the deployment. When the business rules it-
self are successfully deployed at RB1 and RB2, according
to the exchanged protocol messages (dashed lines), the pro-
cess can proceed. After the successful deployment of the
business rules in the rule base of the target business rule
engine, the first deployment step is done.

The second step is the deployment of the Rule Web ser-
vices for executing the business rules deployed in the first
step in a service-oriented way. Therefore, each RBi per-
forms a lookup in the UDDI registry to find the endpoint of a
RWSCi in its current location. Concurrently, RB1 and RB2

perform a lookup the find a corresponding RBCi to establish
a deployment coordination among RB1, RB2, RWSC1 1,
RWSC1 2 and RWSC2.

After binding to each RWSCi, RBi sends a
DeployRuleService message to each RWSCi ,
containing the WSRID of the recently deployed customer
registration rules to generate a Rule Web service, called
CustomerRegistrationService. On reception of
the DeployRuleServicemessage, the RWSCi uses the
WebServiceCodeGenerator to generate the source
code of the Rule Web service. The ServiceDeployer
uses the generated source code to compile and deploy the
service to the Web service container. During the whole

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

Location BLocation A

RBC1_1

RB1

RWSC1_1 RWSC1_2

(1) DeployRules

RBC1_2

coordination
 messages

(3) DeployRuleServices (3) DeployRuleServices

coordination
messages

RB2
(2) DeployRules

RWSC2

RBC2_1 RBC2_2

(3) DeployRuleServices

coordination
messages

coordination
messages

coordination
messages

coordination
messages

Deployment
Tool

Figure 5. Distributed Business Rules Deployment Scenario

deployment process, each RBCi exchanges coordination
message to report possible errors or successfully com-
mitting the deployment. The protocol is responsible for
managing a successful deployment of both, the rules in
the rule base and the Rule Web service for executing the
former deployed rules. If an error occurs, for example,
in the first step of the deployment, the protocol initiates
a rollback; otherwise it might lead to inconsistencies in
different rule bases. If the deployment of the business rules
has been successful, and the deployment of the Rule Web
services leads to an error, then all the Rule Web services
need to be rolled back to the state before the deployment.
The deployment of the Rule Web services can then, e.g., be
re-executed after fixing the problem.

5. Deployment Coordination Protocol

Coordinating the deployment of new business rules is
one of the most important aspects in our distributed busi-
ness rules environment. The successful deployment of rules
to one or more specific rules brokers RBi, e.g., from the
headquarter location A, is the prerequisite for the genera-
tion and the deployment of the Rule Web services for ex-
ecuting the business rules. Considering a large number of
different locations, a distributed coordination mechanism is
necessary to manage the deployment and to ensure that the
system and their provisioned Rule Web service are in con-
sistent state.

5.1. WS-Coordination

We have build our solution on top of the WS-
Coordination [2] specification, which is a general-purpose
specification for achieving coordination among several
participants in the Web service area. WS-Coordination
is, in general, protocol independent, meaning that every
proprietary protocol can be implemented for the use with
WS-Coordination specification. Every coordinator has to
implement the ActivationCoordinatorPortType,
with the CreateCoordinationContext operation
used to initiate a coordination session by creating a com-
mon context, shared among all participants. Furthermore,
the RegistrationCoordinatorPortType has
to be implemented (with the RegisterOperation)
to register a participant with a specific protocol in the
coordination. Each participant in the coordination has to
implement the ActivationRequesterPortType
with its only operation CreateCoordination-
ContextResponseOperation to send back the
created coordination context to the participant. Further-
more, the RegistrationRequestorPortType, with
the operation RegisterResponseOperation has
to be implemented, to receive a reference to the protocol
specific port type from the coordinator.

Based on this general port types needed for coordination,
we depict our specific protocol for the “hot-deployment” of
business rules and their corresponding Rule Web services
as a state diagram in Figure 6.

Our protocol, called HotDeployment protocol, is used
to coordinate the deployment among different RBi and
RWSCi, and it fits into the WS-Coordination specification.

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

Activeregister

Deploying
Rules

deploy

Preparing

completing

Deploying
Rule Web Service

deploy

Aborting

failure/
rollback Notifying

completing

completed

failure/
rollback

Figure 6. HotDeployment Protocol State Diagram

Hot deployment in this context means that the system is
available (serving client requests), while the deployment
business rules and their corresponding Rule Web services
for invoking the business rules takes place. It guarantees
that no downtime of the system is required to generate and
deploy new Web services. The protocol is used by our sys-
tem to coordinate the deployment of business rules to differ-
ent RBi followed by deployment of the Rule Web services
to various RWSCi nodes. A state diagram of the protocol is
presented in Figure 6.

After a participant registers to take part in the coordi-
nation, the participant is in state active. The protocol is
initiated when the DeployRules operation at a certain
rule engine RBi is executed by using an external deploy-
ment tool. Based on the deployment policy, which speci-
fies all the RBi that should additionally deploy the business
rules, the protocol coordinates the deployment among mul-
tiple RBi to successfully deploy the rules. After each RBi

has deployed its business rules, the first phase is completed
and the protocol reaches the Preparing state, where each
RWSCi is notified to prepare for the generation and deploy-
ment of Rule Web services. If an RWSCi is prepared for de-
ployment, the DeployRuleServices operation of each
RWSCi is executed by the corresponding RBi. When suc-
cessfully finished, each RWSCi notifies the initiating RBi

about the outcome of the deployment. When an error oc-
curs, the initiating RBi, gets informed to react appropriately
(e.g., redeploy later or restart the server, etc). Furthermore,
the protocol supports a rollback of business rules, which is
necessary if one RBi cannot deploy its rules without errors
or an RWSCi cannot generate and deploy the Rule Web ser-
vices. In general, it is a prerequisite that a RBi has success-
fully deployed its business rules before the corresponding
RWSCi can deploy its Rule Web services. The deployment
of the Rule Web services is initiated by the RBi. In case of
an error in the Rule Web service deployment, RBi can de-
cide, based on the policy, whether to retry the deployment
of the services or to abort and rollback the deployment.

As required by WS-Coordination, each participant and
coordinator has to implement the following port types sum-

PortType Service Operations

DeploymentCoordinator-
PortType

Prepared, Completed,
Error, Unknown

DeploymentParticipant-
PortType

Prepare, Complete, Roll-
back, Error, Unknown

Table 1. Hot Deployment Coordination Port-
Types

marized in Table 1. The provided operations specify the
initiation of the deployment, with the Prepare opera-
tion, the successful completion of a deployment is issued
with the Complete operation. The operations Error and
Unknown are used to signal an error during the deployment
or to report an unknown error (e.g., an unexpected server
crash). The Rollback operation is used to rollback a cur-
rently running deployment process in case of unexpected
error which would lead to inconsistencies.

5.2. Rule Deployment

In this section, we depict an example to show the deploy-
ment of business rules with a focus on the involved coordi-
nation messages on an abstract level by using the sequence
diagram in Figure 7.

In this example, we use only one rule broker RB1, one
RWSC1 and two coordinators, due to space reasons in the
sequence diagram. Therefore, the deployment of business
rules to RB1 does not need to be coordinated with other
rules brokers.

The interaction starts by invoking the DeployRules
operation at RB1, which is done by a deployment tool. Af-
ter receiving the DeployRulesmessage from the deploy-
ment tool, RB1 creates a coordination context with Coordi-
nator 1 (message 2) which in turn sends back the coordina-
tion context (message 3). Then RB1 register for the HotDe-
ployment protocol (message 4+5). After handling the reg-
istration, RB1 queries the UDDI registry to find an RWSCi

where it can deploy the Rule Web service (message 6) and

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

Deployment Tool RB 1 Coordinator 1 RWSC 1 Coordinator 2 UDDI

1) DeployRules
2) create CC

3) return C1

4) register HD protocol

5) return protocol coord

6) find RWSC

7) return RWSC endpoint

8) bind

9) create CC

10) return C2

11) register HD protocol

12) register HD protocol

13) return protocol coord.

14) return protocol coord.

15) prepare
16) prepare

17) prepare

18) prepared

19) prepared

21) DeployServices
22) complete

23) completed
24) completed

protcol specific message application specific message activation & coordination specific message

Legend:

20) prepared

Figure 7. Rule Deployment Scenario

it dynamically binds to the returned RWSC1 (message 8).
Then the coordinator RBC1 and RBC2 agree on the coor-
dination and register also for the HotDeployment protocol
(message 9-14). The RB1 sends out a prepare protocol mes-
sage to notify RWSC1 that it should prepare for deployment
(message 15-20). When RB1 receives that RWSC1 is ready
for deployment, the DeployServices operation is exe-
cuted at RWSC1. After successfully generating and deploy-
ing the Rule Web services to RWSC1, a complete message
is sent to notify RB1 that the deployment was successful
(message 22-24). In case of an error, the error is returned
and the RB1 can handle it appropriately (e.g., schedule for
later redeployment).

6. Related Work

In recent years business rules gained a lot of interest for
building enterprise applications. Much research has been
dedicated to the area of rule representation and different

rule engines. Nevertheless, only little work has been done
in the area of architectural approaches for distributed busi-
ness rule systems and, in particular, service-oriented so-
lutions. To the best of our knowledge, there is currently
no existing approach focusing on distributed business rules
systems including an automated transformation of business
rules knowledge into Web services that access and execute
these rules via a unified API.

We categorize our related work in two different parts:
Firstly, we describe some existing business rule systems,
existing projects and standardization efforts. Secondly, we
focus on various research approaches that leverage business
rules technology.

6.1. Systems, Standards and Projects

Various commercial business rule systems exist, offer-
ing integrated business rule management suites. Such suites
typically consist of a rule engine, a rule repository, a rule
editor, debugger and monitoring system. We refer to ILOG

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

[11] as one well-known commercial representative. Fur-
thermore, various open-source systems have emerged. In
our prototypical implementation, we use Drools [8] and Jess
[14] as two examples. Both engines use the well-known
RETE algorithm [9] for matching the facts against the rules
and both are tailored for the Java programming language. It
is worth noting that the aforementioned rule engines do not
provide such an integrated business management solution
such as ILOG, but they provide a small software package
suitable for integration in different business applications.

Most recently, the Java Community Process finished the
final version of their Java Rule Engine API. The goal of the
JSR-094 (Java Specification Request) is to define a runtime
API for different rule engines for the Java platform. The
API prescribes a set of fundamental rule engine operations
based on the assumption that clients need to be able to ex-
ecute a basic multiple-step rule engine cycle (parsing the
rules, adding objects to an engine, firing rules and getting
the results) [13]. In contrast to the Java Rule Engine API,
we focus on the integration of heterogeneous rule engines,
not limiting them to the Java platform. Furthermore, we
have a rather high degree of decoupling between the rule
engine and our Business Rules Broker Interface through a
plugin-based architecture.

In December 2004, the Object Management Group
(OMG)[15] issued the Business Semantics for Business
Rules (BSBR) Request for Proposal (RFP)[16], with the
goal to define an approach for modeling business rules. The
proposal solicits for a meta-model for the specification of
business rules (MOF specification), a meta-model for the
representation of vocabularies and definition of terms and
an XML representation for business rules based on XMI.

In an earlier project called Business Rules for Electronic
Commerce, carried out by IBM Research, a framework for
representing business rules [10] was developed. One of the
results of this project was a Java library called Common-
Rules using declarative logic as knowledge representation
language.

In addition to the aforementioned approaches different
rule representation languages have emerged, currently lack-
ing a standard language. RuleML [19] is currently the most
promising rule representation initiative. Other languages in-
clude SRML (Simple Rule Markup Language) [12] from
ILOG, BRML (Business Rule Markup Language) as one
result of the above mentioned IBM project and other pro-
prietary languages developed by different vendors.

6.2. Research Approaches

In [17], we presented, how BPEL can be enriched with
business rules evaluated during the execution of the pro-
cess orchestration. The concept is similar to the con-
cepts proposed by the aspect oriented programming (AOP)

paradigm, where we apply the rules via interceptor, either
before or after the execution of a BPEL activity. We imple-
mented a prototype, which uses the Business Rules Broker,
an Enterprise Service Bus and a transformation engine.

Business rules facilitate other interesting approaches as
published in [3, 4]. The authors depicted an approach on
how to separate and externalize business rules from the
composition process, thus reducing the complexity of the
composition. Furthermore, they presented a system called
AOP4BPEL, an aspect-aware orchestration engine, which
allows modeling business rules as aspects and integrating
them into the composition process.

Cibran et. at. [7] presented different example categories
of business rules that are applicable in Web service compo-
sition processes. They implemented these business rules by
using AOP techniques to model the dynamic rules as state-
ful aspects, allowing a seamless integration into the compo-
sition process by using AOP weaving techniques.

In [5, 6], the authors try to encapsulate the reusable
business rules from the core application logic. In object-
oriented systems, the business rules are encapsulated from
the core application logic but the connectors — code that
connects the rules to the core application — are not. Since
business rules evolve over time, their approach is to fully
decouple the connectors from the core application logic by
using aspect-oriented programming.

Distributed execution of business rules by facilitating
Web service technologies was developed in [20]. The au-
thor argues that business rules are inherently distributed,
therefore, the execution of the rules should also be dis-
tributed. The proposed approach uses SOAP intermediaries
and business rules encoded in the header of the SOAP mes-
sage. The execution sequence is specified by the order of
the rules and each intermediary processes one entry along
the execution path. In contrast to our approach, the author
focuses more on the distributed execution aspect of busi-
ness rules, whereas we focus on distributing business rules
engines, managing the distributed rules engines and the pro-
visioning of Rule Web services.

7. Conclusions

In this paper we have addressed the issue of designing
a distributed business rule management system based en-
tirely on Web service technologies. In the first part, we
have motivated our work by depicting an example from the
telecommunication industry. Based on our previous work,
we have identified the main components for the distributed
approach. We have presented the design of the each com-
ponent and have shown some aspects of our current deploy-
ment strategy.

A HotDeployment protocol fitting into the existing WS-
Coordination framework has been developed, which is suit-

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

able for so-called hot deployment of business rules to vari-
ous business rule engines and the corresponding Rule Web
services. Based on the distributed coordination architecture,
the number of deployment nodes and rules engines to be in-
terconnected is not limited to a certain amount, therefore,
having high flexibility and achieving scalability in case of
performance bottlenecks at certain rule engines.

7.1. Future Work

Our current prototype implementation lacks conflict han-
dling abilities which might occur when deploying business
rules and their Rule Web services. Conflicts might also oc-
cur whenever newer rules are available at certain business
rule engines, or newly deployed rules conflict with other
rules.

Furthermore, we have not investigated security and en-
cryption issues, which will be required when dealing with
the deployment of business rules, which represent the
knowledge of an enterprise.

One of the most important aspects is to find suitable
larger scale demonstration applications where we can ap-
ply our approach. Ideally, existing applications, embedding
rules in source code should be reengineered (at least some
parts) to evaluate the usefulness of our architecture and do
some performance studies.

References

[1] G. Alsonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices – Concepts, Architectures and Applications. Springer
Verlag, 2004.

[2] BEA, IBM, Microsoft. Web Services Coordination
(WS-Coordination). ftp://www6.software.
ibm.com/software/developer/library/
WS-Coordination.pdf, November 2004.

[3] A. Charfi and M. Mezini. Aspect-Oriented Web service
Composition with AO4BPEL. In L. J. Zhang, editor, Proc.
ECOWS 2004, volume 3250 of LNCS. Springer, 2004.

[4] A. Charfi and M. Mezini. Hybrid Web Service Composition:
Business Processes Meet Business Rules. In Proceedings of
the 2nd International Conference on Service Oriented Com-
puting, November 2004.

[5] M. Cibran and M. D’Hondt. Composable and reusable busi-
ness rules using AspectJ. In Proceedings of the Workshop
on Software Engineering Properties of Languages for As-
pect Technologies (SPLAT) at the International Conference
on Aspect-Oriented Software Development, 2003.

[6] M. Cibran, M. D’Hondt, and V. Jonckers. Aspect-oriented
programming for connecting business rules. In Proceedings
of the 6th International Conference on Business Information
Systems (BIS), 2003.

[7] M. A. Cibrán and B. Verheecke. Dynamic business rules
for web service composition. In Proceedings of the Second
Dynamic Aspects Workshop (DAW), 2005.

[8] Drools. Java Rule Engine. http://www.drools.org.
[9] C. Forgy. RETE: a fast algorithm for the many pattern/-

many object pattern match problem. Artificial Intelligence,
19(1):17–37, 1982.

[10] IBM T.J. Watson Research. Business Rules for Elec-
tronic Commerce Project. http://www.research.
ibm.com/rules/home.html, 1999.

[11] ILOG. Website. http://www.ilog.com.
[12] ILOG. Simple Rule Markup Language (SRML). http:

//xml.coverpages.org/srml.html, 2001.
[13] Java Community Process. JSR 94 - Java Rule En-

gine API. http://jcp.org/aboutJava/
communityprocess/final/jsr094/index.
html, August 2004.

[14] JESS. Java Rule Engine. http://herzberg.ca.
sandia.gov/jess.

[15] OMG. Object Management Group. http://www.omg.
com.

[16] OMG. Business Semantics of Business Rules – Re-
quest for Proposal. http://www.omg.org/cgi-bin/
doc?br/03-06-03, 2003.

[17] F. Rosenberg and S. Dustdar. Business Rules Integration
in BPEL – A Service-Oriented Apporach. In Proceedings
of the 7th International IEEE Conference on E-Commerce
Technology (CEC 2005), 2005.

[18] F. Rosenberg and S. Dustdar. Design and Implementation
of a Service-Oriented Business Rules Broker. In Proceed-
ings of the 1st IEEE International Workshop on Service-
oriented Solutions for Cooperative Organizations (SoS4CO
’05), 2005.

[19] RuleML Initiative. Website. http://www.ruleml.
org.

[20] R. Schmidt. Web services based execution of business
rules. In Proceedings of the International Workshop on Rule
Markup Languages for Business Rules on the Semantic Web,
2002.

[21] The Business Rules Group. Defining Business
Rules – What Are They Really? http://www.
businessrulesgroup.org/first paper/
br01c0.htm, July 2000.

[22] B. von Halle. Business Rules Applied. Wiley, 1 edition,
2001.

[23] G. Wagner. How to design a general rule markup lan-
guage? In Workshop XML Technologien fuer das Semantic
Web (XSW), Berlin, June 2002.

[24] X. Wang, J. Sun, X. Yang, Z. He, and S. Maddineni. Busi-
ness rules extraction from large legacy systems. In Proceed-
ings of the Eighth European Conference on Software Main-
tenance and Reengineering, pages 249–258, 2004.

Proceedings of the Third European Conference on Web Services (ECOWS’05)
0-7695-2484-2/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

