DA10S- Efficient Dynamic Web Service Invocation

Philipp Leitner, Florian Rosenberg, Schahram Dustdar
VitalLab, Technical University of Vienna
Argentinierstrasse 8/184-1
A-1040, Vienna, Austria
lastname @infosys.tuwien.ac.at

Abstract

Systems based on the Service-Oriented Architecture
(SOA) paradigm need to be able to bind to arbitrary (Web)
services at run-time. However, current service frame-
works are predominantly used through pre-compiled ser-
vice access components, which are invariably hardwired
to a specific service provider. In this paper, we present
DAI0S— a massage-based service framework that supports
implementation of SOAs, enabling dynamic invocation of
SOAP/WSDL-based and RESTful services. It abstracts from
all internals of the target service, allowing clients to be
decoupled from services they use. DAIOS’ runtime perfor-
mance is on par with the current state of the art — and is,
therefore, a feasible solution for developers striving to im-
plement dynamic SOAs.

1. Introduction

Software systems built on top of Service-Oriented Ar-
chitectures (SOAs) [1] intend to use a triangle of three op-
erations, publish, find and bind, to decouple all roles partic-
ipating in the system. Two elements of this triangle, publish
and find particularly, put requirements on the service reg-
istry and the interface definition language: to publish ser-
vices, an expressive and extensible service definition lan-
guage has to be available and to be supported by the service
registry. These issues are pursued within the VReSCO [2]
project. The third operation, bind, is independent from the
service registry: binding has to be handled solely by the
service consumer. It is essential for the implementation of a
SOA that the consumer is able to connect to any service that
he might discover during the find step, and that it is possible
to change this binding at any time (specifically at run-time
of the system) if the original target service becomes unavail-
able or services delivering a more suiting Quality of Service
level are found.

In this article we will present DAIOS, a message-based

dynamic service invocation framework that enables applica-
tion developers to create service clients which are not cou-
pled to any specific provider. We will detail the require-
ments that drove the design of our prototype, the architec-
ture of our solution and explain how our approach solves
the present issues that we currently encounter when build-
ing SOAs with state of the art technology. Finally, we will
also present an evaluation of our DAIOS prototype with re-
gard to functional and runtime performance aspects.

2. Dynamic Service Invocation

Dynamic binding is not easy with current state of the
art Web service client frameworks such as Apache Axis 2
or Apache WSIF. These frameworks strictly rely on client-
side stubs to invoke services, which are usually autogen-
erated at design-time. However, stubs are invariably hard-
wired to a specific service provider and cannot be changed
at run-time. This is a severe problem for realizing a SOA: if
service providers are hardwired into the service consumers’
application code, producers and consumers cannot by any
means be considered loosely coupled. The usage of client
stubs does not follow the idea of SOA, since find as well as
bind are in that case actually carried out by the developer.
A client application relying on pre-compiled stubs cannot
implement a SOA. We, therefore, conclude that the SOA
triangle is currently “broken” [2].

Additionally, existing Web service client frameworks
such as Apache Axis 2 and Apache WSIF often suffer from
a few further misconceptions. They are often built to be
as similar as possible to earlier distributed object middle-
ware systems [3], implying a very strong emphasis on RPC-
centric and synchronous Web services. SOAs, on the other
hand, are centered on the notion of asynchronous exchange
of business documents.



2.1. Requirements

Taking into account the fundamental maladies of cur-
rently available Web service client-side solutions we de-
fine the following requirements for a Web service invoca-
tion framework that supports the core SOA ideas:

e Stubless service invocation: Given that generated stubs
entail a tight coupling of service provider and service
consumer the invocation framework shall not rely on
any static components such as client-side stubs or data
transfer objects. Instead the framework should be able
to invoke arbitrary Web services through a single inter-
face, using generic data structures.

e Protocol-independent: Web service standards and pro-
tocols have not yet fully settled. There is still ongoing
discussion about the advantages of the REST [4] archi-
tecture as compared to the more common SOAP and
WSDL-based [5, 6] approach to Web services. The
framework should therefore be able to abstract from
the underlying Web service protocol, and support at
least SOAP-based and REST-based services transpar-
ently.

e Message-driven: Currently Web services are often
seen as collections of platform-independent remote
methods. The framework shall be able to abstract from
this RPC style which usually leads to tighter coupling,
and follow a message-driven approach instead.

e Support for asynchronous communication: In a SOA,
services might take a long time to process a single re-
quest. The currently prevalent request/response style
of communication is not suitable for such long-running
transactions. The framework shall therefore also sup-
port asynchronous (non-blocking) communication.

e Simple API: Current dynamic invocation interfaces are
often not intuitive to use. The framework shall utilize
a message-driven approach to make the API to the user
as simple as possible.

e Acceptable runtime behavior: The framework shall
not imply sizable overhead on the Web service in-
vocation. Using the framework shall not be signifi-
cantly slower than using any of the existing Web ser-
vice frameworks.

Unfortunately, current Web service frameworks cannot
fully live up to these requirements (see Section 5 for de-
tails).

3. Related Work

The first Java-based Web service framework that incor-
porated the idea of dynamic service invocation was the
Apache project Web Service Invocation Framework (WSIF)
[7]. The WSIF dynamic invocation interface is intuitive to
use as long as the client application knows the signature of
the WSDL operation to invoke. We consider this to be a un-
acceptable precondition for loosely-coupled SOAs — client
applications should not have to care about service internals
such as the concrete operation name. Another big caveat
of WSIF is its notoriously weak support for complex XML
Schema types as service parameters or return values. Com-
plex types can only be used if they are “mapped” to an exist-
ing Java object beforehand, what is frequently impossible in
dynamic invocation scenarios. These problems, along with
the fact that the framework is not under active development
since 2003 and the relatively bad runtime performance, ren-
der WSIF outdated today.

The Apache Axis 2 [8] framework incorporates a lot
more SOA concepts than WSIF: it supports client-side asyn-
chrony and works much more on a document level than
the strictly RPC-based WSIF. Event though Axis 2 is still
grounded on the usage of client-side stubs it also supports
dynamic invocations through the OperationClient or
ServiceClient APIs. The disadvantage of these inter-
faces is that they expect the client application to create the
entire payload of the invocation (e.g., the SOAP body) it-
self. In that case Axis 2 does little more than transfer the
invocation to the server. This is not the level of abstraction
that we expect from a Web service framework used to con-
struct a SOA client. However, we recognize that the Axis 2
SOAP and REST stacks are well developed and highly per-
formant. We therefore created a Axis 2 service backend as
part of our DAIOS prototype in order to combine the advan-
tages of DAIOS and Axis 2: the Axis 2 backend uses the
dynamic invocation abstraction of DAIOS, but utilizes the
Axis 2 service stack to carry out the actual invocation. Sim-
ilar problems as present in Axis 2 arise with other recent
service frameworks such as Codehaus XFire [9] or XFire’s
successor, Apache CXF [10]. Ultimately, all of these client-
side frameworks are relying on static components to access
Web services, with little to no support for truly dynamic in-
vocation scenarios.

JAX-WS (Java API for XML-based Web Services) is
the latest Java-based Web service specification. JAX-WS
is described in JSR (Java Specification Request) 224 [11],
and is the official follow-up to the older JAX-RPC [12].
JAX-WS is implemented for instance in the Apache CXF
project, and, therefore, exhibits similar problems — although
the change in the naming suggests that JAX-WS is less
RPC-oriented than its ancestor the specification still focuses
on WSDL-to-operation mappings, ignoring the messaging



Service
Registry

FIND PUBLISH

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consumer BIND

Daios
Message

DAIOS System
Framework /
Frontend

’ N
’ \
/ \
<<uses>> N <<uses>>
S Q
/

N

i| Interface (WSDL) )

H Parser Service Invoker ---- >
: |

: |

SOAP Stack

REST Stack

Figure 1. Daios overall architecture

ideas of SOA and Web services. REST is also not discussed
explicitly in the JSR, even though the document claims to
generally handle XML-based Web services in Java.

A different approach to dynamic service invocation has
been introduced by Nagano et al. [13]. They propose to
continue using static stubs, but bind them to more generic
interfaces instead of “precise” ones. That way the same
stubs could be used to invoke any service with a similar
interface, thereby enabling looser coupling between client
and provider. The advantage of this approach is that (unlike
to our ideas) static type safety can be achieved, but there are
also considerable disadvantages: the concept is only feasi-
ble for Web services defined using a formalized XML inter-
face (what is currently not the case with most REST-based
services), and the practical implementation of more generic
interfaces is often a hard problem, and needs a lot of do-
main knowledge — it is therefore hard to create a generic
framework that can be used by SOA clients in any problem
domain using this approach.

4. The DA10OS Solution

With the requirements from Section 2.1 in mind we have
designed and prototypically implemented the DA10S (Dy-
namic and Asynchronous Invocation of Services) frame-
work. DAIOS is a Web service invocation frontend for
SOAP/WSDL-based and RESTful services. It supports
only fully dynamic invocations without any static compo-
nents such as stubs, service endpoint interfaces or data
transfer objects.

Figure 1 sketches the general architecture of the DAIOS
framework, and how it fits into the general SOA triangle
of publish, find and bind. The framework internally splits

up into three functional components: the general DAIOS
classes which are the at core of the framework and orches-
trate the individual other components, the interface parsing
component which is responsible for preprocessing (binding)
and the invoker component which conducts the actual Web
service invocations using a REST or SOAP stack. Clients
communicate with the framework frontend using DAIOS
messages which are DAIOS’ internal data representation
format. The general structure of the framework is an imple-
mentation of the Composite Pattern for stubless Web ser-
vice invocation (CPWSI) [14]. CPWSI separates the frame-
works’ interface from the actual invocation backend imple-
mentation, and allows for flexibility and adaptability.

DATI0S is grounded on the notion of message exchange:
clients communicate with services by passing messages to
them; services return the invocation result by answering
with messages. DAIOS messages are potent enough to en-
capsulate XML Schema complex types, but much simpler
to use than working directly on XML level. Messages are
unordered lists of name-value pairs, referred to as message
fields. Every field has an unique name, a type and a value.
Valid types are either built-in types (simple field), arrays of
built-in types (array field), complex types (complex field) or
arrays of complex types (complex array field). Such com-
plex types can be constructed by nesting messages — arbi-
trary data structures can therefore be built easily, without
the need for a static type system.

Using DAIOS is generally a three-step procedure:

1. First and foremost, clients have to find a service that
they want to invoke (service discovery phase). This
step is external to DA10S— the service discovery prob-
lem is mostly a registry issue and has to be handled
separately [2].

2. In the second step the service has to be bound (prepro-
cessing phase). During this phase the framework will
collect all necessary internal service information, e.g.,
for a SOAP/WSDL-based service the service’s WSDL
interface will be compiled in order to obtain endpoint,
operation and type information.

3. The final step is the actual invocation of the service
(dynamic invocation phase). During this phase the user
input (i.e., an input message) will be converted into
the encoding expected by the service (for instance a
SOAP operation of a WSDL/SOAP-based service, or
a HTTP GET request for REST), and the invocation
will be launched using a SOAP or REST service stack.
When the invocation response (if any) is received by
the service stack it will be converted back into an out-
put message and returned to the client.

Once a service is successfully bound clients can of
course issue any number of invocations without having to



Daios Message

First_Name : String
Last_Name : String

Address

WSDL Message

<wsdl:part name="First_Name" type="xsd:string"
nillable="true">

<wsdl:part name="Last_Name" type="xsd:string"
nillable="true">

<wsdl:part name="Address" type="addressType">

<schema>
" <complexType name="addressType">
City : String <sequence>

<element name="City" type="xsd:string"/>
<element name="Street" type="xsd:string"/>
<element name="Door" type="xsd:int" />

Street : String :

Door : Integer </sequence>
</complexType>
</schema>

Figure 2. Equivalent Daios and WSDL inputs

re-bind again. Service bindings only have to be renewed
if the interface contract of the service changes or the client
explicitly decides to release the binding for some reason.

Most of DAIOS’ important processing happens in the dy-
namic invocation phase. For a SOAP invocation the frame-
work will analyze the given input and determine which
WSDL input message the provided data matches best. For
this DAIOS relies on a specific similarity algorithm for
DA10S and WSDL messages. The general idea of this al-
gorithm is to calculate a structural distance metric for the
WSDL message and the user input, i.e., count how many
parts in a given WSDL message have no corresponding field
in the DATIOS message, whereas lower values represent a
better match. Figure 2 sketches a DAIOS message and a
WSDL message in RPC/encoded style with a structural
distance of 0 (a perfect match). If for instance the field
“First_ZName” would be removed from the DAIOS message
the structural distance would increase to 1.

DA10s will choose to invoke the operation whose input
messages has the best (i.e., lowest) structural distance met-
ric to the provided data. Only if two or more input messages
are equally similar to the input the user has to specify the
operation to use. If no input message is suitable at all, that
is if all input messages have a similarity metric of oo to the
input, an error will be thrown — in that case the provided in-
put is simply not suitable for the chosen Web service. Oth-
erwise the framework will convert the input into an invoca-
tion of the chosen operation, issue the invocation, receive
the result from the service and convert the result back into
a message. The backend used to conduct the actual invo-
cation is replaceable: the DAIOS research prototype comes
with two options of invocation backends, one which uses
the Apache Axis 2 stack and one which utilizes a custom-
built (“native”) SOAP and REST stack. DAIOS also puts
much emphasis on client-side asynchrony. All invocations
can be issued in a blocking or non-blocking fashion.

This procedure abstracts most of the RPC-like internals

of SOAP and WSDL,; the client-side application does not
need to know about WSDL operations, messages, endpoints
or encoding. Even whether the target service is imple-
mented as SOAP- or REST-based service is transparent to
the client. All of these service details are handled solely by
DAI0s, allowing the client application to be as generic as
possible.

4.1. Usage Examples

1 // create a Daios backend

2 ServiceFrontendFactory factory =

3 ServiceFrontendFactory . getFactory

4 (”at.ac.tuwien.infosys.dsg.daiosPlugins.”+
5 nativelnvoker. NativeServicelnvokerFactory”);
6

7

8

9

// preprocessing — bind service
ServiceFrontend frontend = factory.createFrontend (
new URL(
10 “http://vitalab . tuwien.ac.at/”+
11 “orderservice?wsdl”));

13 // construct input that we want
14 // to pass to the service
15 DaiosInputMessage registration

16 = new DaiosInputMessage ();

17 DaiosMessage address = new DaiosMessage ();

18 address.setString (”City”, ”Vienna”);

19 address.setString (” Street”, “Argentinierstrasse”);
20 address.setlnt(”Door”, 8);

21 registration.setComplex (”Address”, address);

22 registration.setString (”First_ZName”, ”Philipp”);
23 registration.setString ("Last_Name”, ”Leitner”);

25 // dynamic invocation
26 DaiosOutputMessage response =
27 frontend .requestResponse (registration);

29 // retrieve result
30 String regNr = response.getString (”registrationNr”);
3t //

Listing 1. Da1os SOAP invocation

Using DAIOS is simple to the extreme. Listing 1 dis-
plays the Java code necessary to invoke a SOAP/WSDL-
based Web service. The message constructed in this exam-
ple corresponds to the structure depicted in Figure 2. Note
that even though the target service uses nested data struc-
tures (registrations contain address data) DAIOS does not
need any static components such as data transfer objects.
All necessary service and type information is collected dur-
ing the preprocessing phase (lines 8 to 11). When the actual
dynamic invocation is fired (lines 26 and 27) the framework
will use this information and convert the user-provided in-
put to a concrete Web service invocation. In this example
a blocking invocation style is used, but asynchronous com-
munication is handled widely identically.

It is important to note that no SOAP or WSDL specifics
such as operation name, endpoint address, or the WSDL
encoding style used have to be specified by the client appli-
cation — DA10S will abstract from all these service internals




Requirement

DA1oS WSIF Axis2 XFire CXF

Stubless service invocation:
Simple types
Arrays of simple types
Complex types
Arrays of complex types

Protocol-independent:
Transparent protocol integration
SOAP over HTTP support
REST support

Message-driven:
Document-centric interface
Transparent handling of service internals

Support for asynchronous communication:
Synchronous invocations
Asynchronous invocations

NI RN
N P I N
N P N S E N
XN (XX [XNUX XX
N P N N E N

Simple API:
Simple to use dynamic interface

v v X v oo/

Table 1. Functional comparison with regard to the requirements from Section 2.1

and expose a uniform interface, therefore, enabling loose
coupling between client and service.

String myAPIKey = ... // get an API key from Flickr

ServiceFrontendFactory factory =
ServiceFrontendFactory . getFactory
6 (”at.ac.tuwien.infosys.dsg.daiosPlugins.”+
7 nativelnvoker. NativeServicelnvokerFactory”);

1

2

3 // use the native backend
4

5

9 // preprocessing for REST
10 ServiceFrontend frontend = factory.createFrontend ();

12 // setting the EPR is mandatory for REST services
13 frontend.setEndpointAddress (
14 new URL(”http://api. flickr.com/services/rest/”));

16 // construct message
17 DaiosInputMessage in = new DaiosInputMessage ();
18 in.setString (”method”,

19 “flickr.interestingness.getList”);

20 in.setString (”api_-key”, myAPIKey);

21 in.setInt(”per_page”, 5);

23 // do blocking invocation
24 DaiosOutputMessage out =
25 frontend .requestResponse (in);

27 // convert WS result back

28 // into some convenient Java format

29 DaiosMessage photos = out.getComplex(”photo”);
0 /..

Listing 2. Da10os REST invocation

Listing 2 exemplifies the invocation of a RESTful Web
service. In this listing the widely known Flickr REST API!

Uhttp://www.flickr.com/services/api/

is accessed and a list of hyperlinks to the most “interesting”
photos is retrieved.

RESTful and SOAP-based services are invoked through
the same interface — the code necessary to access the ser-
vice is practically identical for both types of Web services.
The main difference is that no interface definition language
similar to WSDL has yet been established for RESTful ser-
vices, leading to the problem that the user is forced to spec-
ify more service details for REST-based invocations (the
endpoint address in the example).

5. Evaluation

We have evaluated our prototype against a variety of cur-
rently available Web service frameworks: Apache WSIF,
Apache Axis 2, Codehaus XFire and Apache CXF. We have
compared the frameworks in terms of supported functional-
ity, response times and memory consumption. For reasons
of brevity we will only present functional aspects and run-
time performance data in this article.

Table 1 depicts how well the candidate frameworks are
able to cope with the requirements introducted in Section
2.1. The last of these requirements, acceptable runtime be-
havior, will be presented separately below. We believe that
all current service frameworks fail to meet these require-
ments in some important respects. What we consider to
be the core problem is that no currently available solution
really embraces the loosely-coupled document-centric ap-
proach of SOA - all evaluated solutions are based on an
RPC processing model, demanding for explicit knowledge



Performance Comparison [String operation, RPC/encoded]
1000

Daios
Apache WSIF

800 r

@
=}
Is)

/

S
=3
1S3

Invocation Time [ms]

200

///

0 200 400 600 800 1000 1200 1400 1600 1800
Payload Size [KB]

(a)

0

Invocation Time [ms]

Performance Comparison [String operation, document/wrapped]
1000

Daios

Apache WSIF
Apache Axis2
Codehaus XFire
Apache CXF

800

600

400

200

0 B i s . .
0 200 400 600 800 1000 1200 1400 1600 1800
Payload Size [KB]

(b)

Figure 3. Comparison of invocation response times

of service internals such as WSDL encoding styles, opera-
tion signatures or endpoint addresses. Additionally, WSIF
and XFire do not provide a fully expressive dynamic invo-
cation interface — user-defined (complex) types cannot be
used easily over these interfaces if the types are not known
at compile-time. Support for the REST style of Web ser-
vices is not uncommon today, but a transparent integration
of SOAP and REST is not supported. All of these problems
are solved in our DATOS prototype: it exposes a simple mes-
saging interface which can be used to dynamically invoke
arbitrary services without knowing implementation details
of the service (including whether the service is implemented
as a SOAP- or REST-based service), both synchronously or
asynchronously.

The last requirement from Section 2.1 is addressed
in Figure 3. The figure compares the response times
of the candidate frameworks in simple SOAP-based Web
service invocations — Figure (a) displays the results for
RPC/encoded invocations, while Figure (b) does the
same for document /1iteral with wrapped parameters.
RPC/encoded invocations are only evaluated for DAIOS
and WSIF — Axis 2, XFire and CXF do not support this par-
ticular WSDL encoding style. Note that Apache WSIF is
well behind in both test cases; all other candidate frame-
works exhibit similar response times. We have also done
extensive tests using different types of invocations (with bi-
nary or array payload data), but the general result was sim-
ilar for all tests. According to our tests the same applies to
REST-based invocations. We therefore conclude that using
DA10S does not imply a relevant performance penalty over
Apache Axis 2, Apache CXF or Codehaus XFire, and that
our prototype is significantly faster than Apache WSIF.

6. Conclusions

The SOA vision expects distributed systems to use a tri-
angle of three operations, publish, find and bind, to create a
loosely coupled architecture. Services in a SOA have to be
selected or substituted at run-time. Unfortunately, today’s
state of the art client-side service frameworks are not well-
suited for run-time service binding: they are strictly based
on an RPC programming model and use statically gener-
ated service access components, implying a tight coupling
of service provider and consumer. The DAIOS framework
aims at providing a client-side service framework that is bet-
ter suited for such scenarios: it provides a fully expressive
and easy to use dynamic interface, works entirely message-
oriented, has full support for non-blocking communication
and supports SOAP and REST-based services through an
uniform and simple API. DAIOS is on one level with recent
Web service frameworks such as Apache Axis 2, Codehaus
XFire or Apache CXF with regard to runtime performance,
and is therefore a strong solution for developers facing the
dynamic service invocation problem.

6.1. Future Work

Increasingly, Web service implementations use policies
to describe non-functional attributes of Web services. Such
attributes include security policies, transactional behavior
or reliable messaging. For these situations the WS-Policy
framework [15] is often employed. It is important for
a client to adhere to the policies required by the service
provider to allow for a successful interaction with the ser-
vice. Currently, our implementation does not deal with
provider-specific policies, but we plan to add WS-Policy
support to our framework to support policy-enforced inter-
actions. Furthermore, we plan to extend our evaluation of
the DAIOS framework to a more sizable real-life scenario,



in order to get a more accurate picture of the runtime perfor-
mance and usability of our implementation in real business
applications.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Ley-
mann. Service-Oriented Computing: State of the Art
and Research Challenges. IEEE Computer, 11, 2007.

A. Michlmayr, F. Rosenberg, C. Platzer, and S. Dus-
tar. Towards Recovering the Broken SOA Triangle - A
Software Engineering Perspective. In Proceedings of
the 2nd International Workshop on Service Oriented
Software Engineering (IW-SOSE’07), 2007.

W. Vogels. Web Services Are Not Distributed Objects.
IEEE Internet Computing, 7(6), 2003.

R. T. Fielding. Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine, CA, 2000.

World Wide Web Consortium (W3C). SOAP Ver-
sion 1.2 Part0: Primer. http://www.w3.o0rg/
TR/soapl2-part0/, 2003.

World Wide Web Consortium (W3C). Web Ser-
vices Description Language (WSDL) Version 2.0 Part
0: Primer - W3C Candidate Recommendation 27
March 2006. http://www.w3.org/TR/2006/
CR-wsdl20-primer—-20060327/, 2006.

Apache Foundation. Web Services Invocation Frame-
work. http://ws.apache.org/wsif/.

Apache Foundation. Apache Axis 2. http://ws.
apache.org/axis2/.

Codehaus XFire.
org/.

http://xfire.codehaus.

Apache Foundation. Apache CXF: An Open
Source Service Framework. http://incubator.
apache.org/cxf/.

D. Kohlert and A. Gupta. Java API for XML-Based
Web Services, Version 2. http://jcp.org/
aboutJava/communityprocess/mrel/
jsr224/index2.html, 2007.

JSR-101 Expert Group. Java API for XML-
Based RPC, Version 1.1. http://java.
sun.com/xml/downloads/jaxrpc.html#
jaxrpcspecl0, 2003.

[13]

S. Nagano, T. Hasegawa, A. Ohsuga, and S. Honiden.
Dynamic Invocation Model of Web Services Using
Subsumption Relations. In ICWS ’04: Proceedings
of the IEEE International Conference on Web Services
(ICWS’04), 2004.

P. Buhler, C. Starr, W. H. Schroder, and J. M. Vidal.
Preparing for Service-Oriented Computing: A Com-
posite Design Pattern for Stubless Web Service Invo-

cation. In International Conference on Web Engineer-
ing, 2004.

J. Schlimmer et al. Web Services Pol-
icy Framework (WS-Policy), joint specifi-
cation by IBM, BEA Systems, Microsoft,
SAP AG, Sonic Software, and VeriSign.

http://www.ibm.com/developerworks/
library/specification/ws-polfram/,
2006.



