
Se
rv

ic
e

M
as

hu
ps

24 	 Published by the IEEE Computer Society	 1089-7801/08/$25.00 © 2008 IEEE� IEEE INTERNET COMPUTING

Composing RESTful Services
and Collaborative Workflows
A Lightweight Approach

Florian Rosenberg
Technical University Vienna

Francisco Curbera,
Matthew J. Duftler,
and Rania Khalaf
IBM T.J. Watson Research Center

The use of RESTful Web services has gained momentum in the development

of distributed applications based on traditional Web standards such as HTTP.

In particular, these services can integrate easily into various applications, such

as mashups. Composing RESTful services into Web-scale workflows requires a

lightweight composition language that’s capable of describing both the control

and data flow that constitute a workflow. The authors address these issues

with Bite, a lightweight and extensible composition language that enables

the creation of Web-scale workflows and uses RESTful services as its main

composable entities.

T he increasing adoption of the ser-
vice-oriented architecture (SOA)
paradigm enables service com-

position and scalable Web processes
(or workflows) as a means of building
distributed applications. These systems
use standardized technologies and pro-
tocols, such as the Web services stack
(including SOAP, the Web Services De-
scription Language [WSDL], and Web
Services Business Process Execution
Language [WS-BPEL] specifications1).

The academic and industrial com-
munity is still engaged in a lively, on-
going debate about the limits of the
Web services model, focusing on two
main contention points: the Web ser-
vices stack’s perceived complexity and
its lack of alignment with the Web’s
accepted architectural principles (de-

scribed elsewhere2,3). Much of the com-
plexity attributed to Web services is in
fact tied to requirements from tradition-
al enterprise computing, in particular
those associated with quality of service
(QoS) management.3 This explains the
natural receptivity to the Web services
stack in enterprise settings and the cor-
responding lack of enthusiasm among
pure Web developers.

Despite numerous transgressions in
daily Web practice, the Web develop-
ment community consensus widely
backs the resource-oriented paradigm
as proposed by the Representational
State Transfer (REST) model, which was
introduced as an architectural style for
distributed hypermedia systems.4 In
REST, the main architectural concept is
the information resource, and the prin-

SEPTEMBER/OCTOBER 2008� 25

Composing RESTful Services

cipal interaction mode lets clients retrieve rep-
resentations of those resources. REST imposes
some constraints, such as a uniform interface,
meaning that all resources present the same
interface to clients, and protocol statelessness,
meaning that the server keeps no state on the
client’s behalf. As Steve Vinoski points out in
an overview of REST vs. WS-*, “The fact that
the Web works as well as it does is proof of these
constraints’ effectiveness.”5

The more important aspect of this discus-
sion probably lies in how each architectural
paradigm (and each developer community) can
benefit from the other. The simplicity of the
single interface, single protocol (HTTP in REST)
approach has potential benefits in enterprise
scenarios, if architects and developers can over-
come QoS concerns. In this article, we address
the complementary problem: how the service
paradigm and SOA’s service composition model
can benefit mainstream Web applications and
their development model. In particular, we ex-
plore the potential benefits of process-oriented
composition for Web scenarios. We focus on the
design principles and applications of a light-
weight, process-oriented composition model —
the Bite language — that we derived by aligning
SOA process composition principles with REST
architectural requirements.

Bite Overview
Architecturally, the Bite model integrates first-
class awareness of REST principles into a sim-
plified workflow language. Its power becomes
evident, however, when combining SOA’s inte-
gration capabilities with Web-centric applica-
tions. Bite lets Web developers create applications
that can seamlessly combine

RESTful services, such as Atom feeds and Web
queries. Graphical flow models already avail-
able on the Web, such as Yahoo Pipes (http://
pipes.yahoo.com/pipes/), enable a dataflow
composition model for feeds but are unable to
incorporate other interaction types.
Simple human interaction, as supported
by forms, instant messaging, and linked
email exchanges. Most Web applications are
naïvely interactive and collaborative.
Collaboration services, such as Lotus Ac-
tivities (www-306.ibm.com/software/lotus/
products/connections/activities.html) or Lotus
Quickr (www-306.ibm.com/software/lotus/

•

•

•

products/quickr/), which support rich, un-
structured interactions between ad hoc com-
munities linked via common business goals.
Beyond individual interactive primitives,
complex collaborative applications are a
key characteristic in social Web applications
usually included under the Web 2.0 ban-
ner. Integrating structured processing with
unstructured collaboration showcases pro-
cess-centric composition’s value in the Web
environment.
Back-end services. Process composition con-
stitutes the backbone for SOA-based process
automation in the enterprise by enabling a
model for back-end service integration. In a
Web-centric environment, process compo-
sition brings structured access to back-end
services into traditional interactive and col-
laborative applications with a simple, inte-
grated programming model.

Here, we’ll focus on Bite’s design principles,
its extensibility, an application scenario for
collaborative flows, and the Bite runtimes that
support multiple platforms.

The Bite Approach
Bite aims to provide a lightweight and extensible
language and integrated programming model for
implementing RESTful service composition and
interactive flows. We introduce Bite’s basic moti-
vation and detail its core constructs elsewhere.1
In this article, we build on that work.

Requirements and Design Goals
Bite is a process composition model for Web ap-
plications, so its foremost requirement is the
alignment with REST architectural principles
(see our previous work for further details1). Be-
yond that, Bite focuses on enabling an agile, it-
erative, and community-oriented development
approach by adhering to the following design
goals and requirements:

Atom life-cycle model. Deployed Bite proc
esses are collections whose members are all
running process instances, created by HTTP
POST requests sent to the collection URL.
Management operations retrieve either the
process instance list (GET against collection)
or an individual process instance execu-
tion state (GET against collection member).
Processes are thus resources in their own

•

•

Service Mashups

26 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

right, but they also interact with other re-
sources through first-class HTTP activities
(GET, POST, PUT, DELETE). Likewise, each de-
ployed process in a Bite runtime belongs to
the collection of Bite-deployed processes;
Bite uses POST requests to deploy new pro-
cess models.
Lightweight process model. Existing composi-
tion approaches are still very complex, so Bite
requires a lightweight model and execution
engine that’s still powerful enough to imple-
ment real-world Web-scale workflows (called
flows in Bite). The Bite language has only a
basic set of predefined language constructs
for specifying the flow logic but doesn’t sup-
port scopes, compensation, or transactional
behavior. However, it still provides a rich
execution semantics that is aligned with the
semantics of WS-BPEL activities that can oc-
cur in a WS-BPEL flow activity.
Scripting approach. Bite adopts many con-
cepts from traditional scripting languages,
such as dynamic data types. In Bite, users
don’t need to explicitly define or type vari-
ables before they can use them. Incoming or
outgoing activity data is implicitly available
(once a user has defined a data link) and is
dynamically typed. Bite uses convention
over configuration, such as having default
I/O variables for each activity.
Language extensibility. One key feature of
Bite is its extensibility, which lets the com-
munity add new activity types by imple-
menting the required code in a programming
or scripting language. Following the script-
ing approach, Bite enables writing such ex-
tensions in any major scripting language
(such as Groovy, Python, or Ruby). This lets
users create a large catalog of extensions.
Web and human integration. Another impor-
tant aspect is that Bite integrates humans that
participate in flows. This requires Web front
ends that can interact with the flow to allow
a so-called deep integration with the Web.

By addressing all these requirements, Bite can
be used in a flexible manner to address various
kinds of workflow applications.

Basic Model and Language
The basic Bite process model comprises a flat
graph (except for loops) containing atomic ac-
tions (activities) and links between them. To

•

•

•

•

create loops, we use a dedicated while activ-
ity, the only construct allowed to contain other
activities. Bite encodes graph execution logic in
conditional transition links between activities
and supports error handling via special error
links to an error-handling activity.

A key Bite feature is its small set of basic ac-
tivities. The language’s core activities consist of

basic HTTP communication primitives for
receiving and replying to HTTP requests
(receiveGET/POST, replyGET/POST) and ma
king requests to external services (GET, POST,
PUT, DELETE);
utility activities for waiting, calling local
code, or terminating the flow; and
control helpers, such as external choice and
loops.

A Bite flow both uses external services in
its flow logic and exposes itself as a service.
Sending an HTTP POST request to a flow’s base
URL creates a new flow instance that’s assigned
a new instance URL. This instance URL is re-
turned in the response’s HTTP Location head-
er field. The instance URL contains a flow ID to
correlate subsequent requests to that flow.

Each flow instance can define multiple re-
ceive activities corresponding to multiple entry
points. These activities expose additional URLs
as logical addresses of the instance’s nested re-
sources. The Bite runtime dispatches POST re-
quests directed to these URLs to the individual
receive activities in the flow model using the
relative URLs defined in the activities’ url at-
tribute. This mechanism allows users to build
interactive flows that expose multiple entry
points for interacting with the flow — for ex-
ample, by using different Web forms that act as
a front end for the different flow entry points.
To support the development of dynamic Web
forms that interact with the flow (to access the
state and its variables), we provide a set of tag
libraries for developing dynamic Web pages us-
ing Java Server Pages (JSPs).

Flow example. Listing 1 depicts an example that
aggregates two RSS news feeds and also shows
the use of Bite extension activities. Note that XML
is only one possible representation of a Bite flow;
we also support a Groovy DSL variant. Each flow
is specified within a <process> element contain-
ing an optional expressionLanguage attribute.

•

•

•

SEPTEMBER/OCTOBER 2008� 27

Composing RESTful Services

This flow is triggered when
a user or an application sends
a GET request to the relative
URL specified in the url at-
tribute of the receiveGET
activity — for example, http://
localhost:8080/bite/feeds for a
flow deployed on the local-
host in the bite directory.

After the instantiating re-
quest, the Bite runtime ac-
tivates the next two REST
activities (lines 4 through 6 and
7 through 9) because they don’t
depend on any activities. Each
issues a GET to an external re-
source — the Yahoo and BBC
news feeds (URLs shortened
for space reasons) — and places
the resulting RSS feed docu-
ment into an implicit variable,
getYahooFeed_Output and get-
BBCFeed_Output, respectively.

The next activity, called
aggregate, is an extension
activity that takes two RSS XML documents as
input and aggregates both feeds into one. The
aggregate activity defines two input elements
referring to the two preceding activities, thus
defining both a data and an implicit control link
(because the name refers to an activity). If an at-
tribute value is an expression, not a literal, then
it’s prefixed with a $: to indicate the Bite run-
time that it must have to be evaluated. We can
locally override the process element’s expression
language by specifying the desired expression
language directly — for example, using $groovy:
to use Groovy for evaluating this expression.

After aggregating the feeds, the flow returns
the result to the caller and sends an email to the
administrator. (Notice the explicit control link
between sendMail and aggregate.) Then, the
flow instance is finished.

Bite extensibility. Bite’s extensible design lets
the developer community provide additional
functionality in a first-class manner by creat-
ing Bite extension activities and registering
them with the Bite engine. This design lets us
keep the language and its runtime very small,
and lets developers implement other required
activities as extensions. Bite facilitates the im-
plementation of extension activities using Java

or any scripting language that the Java Script-
ing API supports.

Creating an extension activity lets devel-
opers implement the core extension logic with
minimal overhead for reading and evaluating
the extension’s syntax. Bite passes all activity
attributes and inputs to the implementation in
a map object, with an ordered list for unnamed
inputs. For example, the map for the aggregate
activity in Listing 1 has the name attribute’s
value. The extension activity implementation
uses the values of inputs and attributes, does
its work, and returns an instance of an invoca-
tion result object containing the result (an XML
object, in the aggregate case). To register the
implementation with the Bite runtime, the cre-
ator simply deploys it into a predefined direc-
tory for all extensions or keeps it in the same
location as the flow. The extension’s name must
be unique and is defined by its filename.

Executing scripts. Executing script code in the
flow facilitates certain tasks (for example, cal-
culation or accessing some back-end system).
So, we have a script extension that lets Bite ex-
ecute scripts written in any scripting language
that Bite supports, defined either inline or in an
external file. The scripts are fully integrated in

 1 <?xml version=”1.0” encoding=”UTF-8”?>
 2 <process name=”feeds”>
 3 <receivePOST name=”rssRcv” url=”feeds”/>
 4 <GET name=”getYahooFeed”
 5 target=“http://rss.news.yahoo.com/topstories”>
 6 </GET>
 7 <GET name=“getBBCFeed”
 8 target=“http://newsrss.bbc.co.uk/rss.xml”>
 9 </GET>
10 <aggregate name=“aggregateFeeds”>
11 <input value=“$:getBBCFeed”/>
12 <input value=“$:getYahooFeed”/>
13 </aggregate>
14 <replyGET name=“rssReply” url=“feeds”>
15 <input value=“$:aggregateFeeds”/>
16 </replyGET>
17 <sendMail name=“notify” address=“user@example.com”>
18 <input value=“aggregation has taken place”/>
19 <control source=“aggregate”/>
20 </sendMail>
21 </process>

Listing 1. Feed aggregator flow. This shows how to aggregate two news feeds and
send an email upon completion.

Service Mashups

28 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

the flow and thus have access to activity vari-
ables and can define links to other activities.

UI integration and rendering capabilities. Bite
enables a very flexible user interface (UI) integra-
tion because all entry points in a flow are acces-
sible via URLs. Integrating with a mashup tool is
thus quite straightforward: parts of the mashup
that need to interact with the flow make an HTTP
call to the appropriate URL or provide such a ca-
pability via HTML links or buttons for the user
to select. The mashup tool might provide a dash-
board containing several widgets, each of which
might interact with the flow itself. For example, a
Web application that interacts with several stores
might be exposed using a widget showing a
Google map of different stores, another aggregat-
ing available store items, and a third letting users
reserve an item for pick-up. As the user performs
map-related functions (zooming, getting driv-
ing directions, and so on), the flow isn’t involved.
However, clicking to reserve the item sends an
HTTP request to the flow itself. A mashup appli-
cation (QEDWiki) that uses a Bite workflow in the
back end is described elsewhere.6

In addition to the aforementioned UI integra-
tion, Bite provides flexible HTML rendering ca-
pabilities using various template languages to
render HTTP replies or emails from a flow. Bite
provides rendering capabilities using render-
ing functions that a developer must write once
for a specific template language and that can
then be imported if needed (using the afore-
mentioned script activity). Listing 2 shows a
simple example of using rendering capabilities
from the FreeMarker template language (http://
freemarker.sourceforge.net). Line 1 makes the
script that provides the FreeMarker capabilities
globally available and defines a function called
renderFtl, which takes a template file as an ar-
gument. In the replyGET activity at the end of a
flow, we can use the renderFtl function to ren-
der the response. The template itself has access to
all the activity data it needs to render the data.

These rendering capabilities clearly sepa-
rate the flow logic from the presentation logic,
which have to be specified in separate template
files. Additionally, the script activity lets users
plug in any template language by implementing
a specific rendering function (roughly 10 lines
of code in the FreeMarker case).

Collaborative Flows in Bite
Besides writing data-driven applications that
don’t involve the user in the flow execution (as
Listing 1 demonstrates), Bite provides built-in,
first-class support for interactive, collaborative
flows, specifically for email and browser-based
interactions (forms or links). The most common
interactions between users and Web applications
aren’t dependent on proprietary tools — they
usually occur over a browser, via Web forms or
an email client, for instance. A user fills out a
Web form, for example, and after submitting the
form, gets an email with further instructions
that also contain a link. Clicking on that link
provides another entry point to a specific state
of the Web application (an order approval the de-
partment manager has conducted, for example).

Bite supports these concepts by provid-
ing entry and response points in the flow logic
that are clearly specified using receive/reply
activities with relative URLs. The sendMail ac-
tivity allows sending emails directly from the
flow. A reserved variable containing the pro-
cess instance URL easily lets users add links to
email bodies or Web pages that can point back
at subsequent entry points in the flow. Finally,
the ability to create and plug in extension ac-
tivities lets us add a library of activities that
provide first-class support for any specific col-
laborative tools as needed. So, a single Bite flow
and the corresponding HTML pages are often
all that’s needed to create interactive Web ap-
plications, such as ones that can place an order,
get a manager’s email from a RESTful service,
request and get approval, and finally place the
order if approved.

From Workflows to Collaborative Flows
Traditionally, a workflow provides structured be-
havior, but humans heavily use Web applications
and, unlike machines, often accomplish a task in
an unstructured manner. In such free-flowing
tasks, actions and events could occur in multi-
ple ways, multiple people could be involved, and
several different media could exist that don’t go

<script file=“renderFtl.groovy” />
...
<replyGET name=“htmlReply” url=“reports”>
 <input value=“$:renderFtl(‘reports.ftl’)”/>
</replyGET>

Listing 2. Rendering sample. This sample shows how to include
rendering capabilities in Splice using a script.

SEPTEMBER/OCTOBER 2008� 29

Composing RESTful Services

to a centralized application, such as email, face-
to-face conversations, and phone calls.

Consider releasing a piece of software to the
public. This might involve getting approval from
a lawyer for intellectual property clearance or for
the software’s proposed name, or preparing and
delivering the software and its related documen-
tation to a distribution site. Each step, on its own,
is a free-flowing task. It wouldn’t be prudent to
restrict a user to using a workflow to define such
a task. Collaborative tools, such as Lotus Activi-
ties, can do a much better job at creating to-do
lists, keeping track of completion, and putting
the necessary people in touch with each other.

Instead of building unstructured collabora-
tion capabilities directly into a structured work-
flow language or forcing a user to use structured
flows in which a mix of structured and unstruc-
tured behavior is needed, we can achieve first-
class integration with collaborative tools, such
as Lotus Activities. We do this similarly to how
we integrate forms but also add extension ac-
tivities that act as the glue between the chosen
collaboration tool and the Bite workflow.

A Collaborative Flow Example
The left side of Figure 1 shows the basic col-
laborative workflow that a team must carry out
to release a piece of software to the public. This
involves several unstructured tasks that don’t
themselves need a structured workflow. Howev-
er, the workflow is beneficial in that it provides

logic and back-end support for this group of re-
lated tasks. Such structural logic includes

sequencing or providing conditions on a set
of tasks — the team can’t deliver the code
(“code delivery,” in the figure) unless they
have completed the IP and naming clearanc-
es (“naming/IP clearance”) and the lawyers
approve them (“cleared” condition);
affecting one task due to events in another,
such as cancelling the naming clearance
task if the IP clearance request is denied; or
interacting with back-end systems to, for ex-
ample, get the lawyers’ names from the com-
pany directory or log the result (“lookup” or
“log” via GET/POST activities).

Let’s look at the flow in detail. It starts by
collecting project information from the project
team in a Web form that’s posted to the flow
(receivePost activity). This triggers a contacts
lookup in the company directory (“lookup” in
the figure via a POST activity). After the lookup,
the flow triggers the “naming clearance” and “IP
clearance” tasks, both of which are handled via
the Lotus Activities server, which enables un-
structured communication among participants
(in this case, lawyers, project managers, and so
on). Both tasks finish when all the unstructured
activities (such as to-dos) are complete. The law-
yer to whom the task is assigned must specify
the outcome of these clearance tasks by adding

•

•

•

1. Lotus activity creation
2. Addition of multiple to-dos
 (Lotus Activity extension activities)
3. Polls for activity completion
4. Retrieves a completion message
 (Lotus Activity extension activity)

1. Bluepages (HTTP GET/JSON)
2. Lookup of appropriate lawyer
 and system manager (action)

Naming
clearance

Project
info

Project
info

Get
necessary
contacts

and division

IP
clearance

Code
delivery

Cleared

Not cleared

Log

Database interaction
(JDBC extension activity)

Figure 1. A collaborative Bite flow. Bite composes a flow for releasing software to the public by combining unstructured
collaboration activities, back-end services, and user interactions with Web forms.

Service Mashups

30 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

a message “naming cleared” and “IP cleared” in
the Lotus Activities system. Then, if the lawyer
didn’t grant the clearances, the flow sends an
email to the requestor. Otherwise, the code de-
livery task begins and completes the same way
the clearance tasks did.

This collaborative flow uses a set of exten-
sion activities to communicate with a collabora-
tive platform — in our case, the Lotus Activities
server. These include createTask, createToDo,
createMessage, waitForCompletion, and oth-
ers. These extension activities help users to cre-
ate, edit, and complete collaboration tasks (in the
figure, “naming,” “IP clearance,” and “code deliv-
ery”). Lotus Activities manages these tasks until
a team member marks them completed, causing
the flow to receive notification about the result.

This case study shows that Bite facilitates
easily integrating collaborative tools directly
by implementing the connectors as extension
activities. These extension activities are simple;
they contain mainly calls to the Lotus Activi-
ties server in the form of RESTful requests, with
some pre- and postprocessing, such as authen-
tication and extraction of information from the
response messages.

Existing mashup solutions try to address some
of these concerns as well, but they don’t offer the
level of flexibility and extensibility Bite does (see
the “Related Work in Mashups” sidebar).

Runtime Architecture
We can execute a Bite flow on different runtimes
depending on execution requirements. Figure 2
depicts the stack of supported Bite runtimes.

We implement the core part of Bite, the Bite
Core, as part of a small layer on top of the Java
Runtime environment. This part implements the
execution and navigation logic for a Bite flow,
the request handling, the expression framework,
and the extension logic (among other things).

On top of the core logic, we provide four dif-
ferent runtimes that enable using Bite in sce-
narios with different requirements.

The Bite Servlet Runtime is suitable for host-
ing Bite flows as stand-alone Web applications.
It’s based on a modern servlet container (Apache
Tomcat, in our environment) that implements a
simple servlet, listens to HTTP requests and dele-
gates the processing to the Bite Core, and returns
the result to the servlet as an HTTP response.

The Bite Kernel provides an even simpler
runtime directly on top of the Java platform
and eliminates the need to deploy a Bite flow
to a servlet container. The kernel allows an it-
erative development and testing of flows as well
as embedding the flow execution into other ap-
plications. The implementation is similar to the
servlet container — only a very small adapter is
necessary to provide an HTTP listener for del-
egating the requests to the Bite Core and proc
essing its response.

Zero Runtime provides the foundation for
developing flows within Project Zero (www.
projectzero.com), an IBM Community Source Ini-
tiative for building Web 2.0 applications based
on REST principles. The Bite language is part of
the Zero Assemble module and thus allows both
the Bite runtime as well as the flow creators to
leverage some of Zero’s core features.

The Bite Tuscany Runtime allows the execu-
tion of Bite flows as part of a composite appli-
cation implemented and enacted by using the
service component architecture.7 More specifi-
cally, we’ve used Apache Tuscany Runtime, but a
detailed description is out of this article’s scope.

P rocess composition in SOA has turned out
to be the key technology for SOA-based

automation and integration of business opera-
tions and scientific projects. Simultaneously,
Web-based applications’ variety and reach is
bringing in new user demands and developer
requirements. In particular, many Web appli-
cations need to integrate RESTful services and
traditional back-end systems, as well as support
rich user interfaces (incorporating forms, email,
and so on) and emerging social collaboration
tools. Incorporating the lessons learned from
the SOA composition experience will endow the
Web platform with a powerful and highly us-
able integration paradigm that can yield better
developer productivity and more efficient and
maintainable Web applications.

We’ve explored applying process-oriented
composition to Web application development,

Bite Servlet Runtime Bite Tuscany Runtime

Servlet Container SCA Runtime

Bite
Kernel

Zero
Runtime

Bite Core

Java Runtime

Figure 2. Bite runtime architecture. On top of the Bite Core, the
runtime stack enables a range of hosting possibilities, such as a
servlet container, a service component architecture-based runtime,
or hosting on IBM’s Project Zero.

SEPTEMBER/OCTOBER 2008� 31

Composing RESTful Services

focusing on the Bite process model. Other com-
position models and SOA integration principles
might also yield valuable lessons for the REST
development community, just as the REST ar-
chitectural principles and the Web platform as a
whole are likely to fundamentally transform the
enterprise computing world in years to come.�

Acknowledgments
We thank Marc-Thomas Schmidt and Thomas Moran for their

input on combining workflows with collaborative tools.

References
F. Curbera et al., “Bite: Workflow Composition for the

Web,” Proc. 5th Int’l Conf. Service-Oriented Computing

(ICSOC 07), Springer-Verlag, 2007, pp. 94–104.

L. Richardson and S. Ruby, RESTful Web Services,

O’Reilly, 2007.

S. Weerawarana et al., Web Services Platform Architec-

ture, Prentice Hall, 2005.

R.T. Fielding, Architectural Styles and the Design of

Network-based Software Architectures, PhD thesis,

Univ. of California, Irvine, 2000.

S. Vinoski, “REST Eye for the SOA Guy,” IEEE Internet

Computing, vol. 11, no. 1, 2007, pp. 82–84.

M.-T. Schmidt, “Assembling the Perfect Feed,” Jan.

2008; www.projectzero.org/wiki/bin/view/Community/

MarcThomasBlog/BlogEntry1.

“Service Component Architecture Specifications,”

Open Service Oriented Architecture (OSOA), Jan. 2008;

www.osoa.org/display/Main/Service+Component+Arc

hitecture+Specifications.

Florian Rosenberg is a PhD candidate in the Distributed

System Group at the Technical University Vienna. He

performed this work while working as a research co-op

at IBM T.J. Watson Research Center. His research in-

terests include software composition, service-oriented

architectures, and software engineering in general.

Contact him at florian@infosys.tuwien.ac.at.

Francisco Curbera is a research staff member and manager

of the Component Systems Group at the IBM T.J. Watson

Research Center. His research interests include the use of

component-oriented software in distributed computing

systems. He has a PhD in computer science from Colum-

bia University. Contact him at curbera@us.ibm.com.

Matthew J. Duftler is a software engineer in the Compo-

nent Systems Group at IBM T.J. Watson Research Cen-

ter. His research interests include component-based

software engineering, Web services, and workflows.

Contact him at duftler@us,ibm.com.

1.

2.

3.

4.

5.

6.

7.

Rania Khalaf is a research staff member in the Component

Systems Group at IBM T.J. Watson Research Center. Her

research interests include component-based software

engineering, workflow, service-oriented computing,

and Web services. She has a PhD in computer sci-

ence from the University of Stuttgart. Contact her at

rkhalaf@us.ibm.com.

Related Work in Mashups

Many efforts try to give users simple mashup tooling for assem-
bling a Web application that integrates different resources.

Mashups are mainly data-driven Web applications that combine data
from different sources and present them to the user by adding user
interface (UI) widgets. No clear separation exists between the data
flow and the UI widgets that render that data. Current mashup tools
mainly focus on seamless end-user programming without requiring any
programming experience from the end users.1,2 Nevertheless, it’s un-
clear to what extend such end-user mashup tools will allow users to
create reuseable and enterprise-scale mashups. Google Mashup Edi-
tor (http://editor.googlemashups.com) and Yahoo Pipes (http://pipes.
yahoo.com) are two popular Web-based mashup editors for data-
driven composition (mainly returning RSS and Atom feeds). Both use
proprietary formats for representing and storing the mashup logic.
QEDWiki (http://services.alphaworks.ibm.com/qedwiki) is another
mashup tool that lets users create UI widgets that access data from
various services. Additionally, QEDWiki adopts wikis’ idea to create
mashups collaboratively. In contrast to mashups and the aforemen-
tioned tools, Bite features an integrated programming model for build-
ing Web-scale workflows, enabling users to specify control flow, data
flow, and flexible UI integration capabilities that aren’t narrowed to a
specific type of application domain (as mashups are).

E. Michael Maximilien and his colleagues present another interest-
ing approach for creating mashups.3 They developed a domain-specific
language (DSL) for creating mashups called Swashup. The DSL is imple-
mented in Ruby on Rails and provides concepts that let users efficient-
ly create mashups: multiprotocol service and data access, mediation
support, and a means for generating a UI for the resulting mashup. In
contrast to Bite, Swashup doesn’t provide a lightweight composition
support acting as a foundation for implementing workflows that can
integrate UI on top of it. Thus, Bite is well-suited for building data-
driven applications (the typical mashups case) but also for implement-
ing workflows with rich execution semantics.

References
J. Wong and J.I. Hong, “Making Mashups with Marmite: Towards End-User Program-

ming for the Web,” Proc Int’l Conf. Human Factors in Computing Systems (CHI 08), ACM

Press, 2007, pp. 1435–1444.

R. Tuchinda et al., “Building Mashups by Example,” Proc 5th Int’l Conf. Intelligent User

Interfaces (IUI 08), ACM Press, 2008, pp. 139–148.

E.M. Maximilien et al., “A Domain-Specific Language for Web APIs and Services

Mashups,” Proc 5th Int’l Conf. Service-Oriented Computing (ICSOC 07), Springer-Verlag,

2007, pp. 13–26.

1.

2.

3.

