
Domain-Specific Service Selection
for Composite Services

Oliver Moser, Student Member, IEEE, Florian Rosenberg, and

Schahram Dustdar, Senior Member, IEEE

Abstract—We propose a domain-specific service selection mechanism and system implementation to address the issue of runtime

adaptation of composite services that implement mission-critical business processes. To this end, we leverage quality of service (QoS)

as a means to specify rigid dependability requirements. QoS does not include only common attributes such as availability or response

time but also attributes specific to certain business domains and processes. Therefore, we combine both domain-agnostic and domain-

specific QoS attributes in an adaptive QoS model. For specifying the service selection strategy, we propose a domain-specific

language called VieDASSL to specify so-called selectors. This language can be used to specify selector implementations based on the

available QoS attributes. Both the QoS model implementation and the selectors can be adapted at runtime to deal with changing

business and QoS requirements. Our approach is implemented on top of an existing WS-BPEL engine. We demonstrate its feasibility

by implementing a case study from the telecommunication domain.

Index Terms—Service composition, quality of service, monitoring, service selection, domain specific languages.

Ç

1 INTRODUCTION

ENTERPRISE applications are typically constituted of a
number of interorganizational and mission critical

business processes [1], [2]. Such process-driven applica-
tions orchestrate a number of backend services and
communicate with external services offered by business
partners. These processes represent an integral part of a
company’s daily business operations. To be competitive in
the market, a high degree of agility of those processes and
the underlying IT systems is important. It allows us to
adapt rapidly and cost efficiently in response to changes in
the business environment. Therefore, such enterprises
increasingly adopt the Service-Oriented Architecture
(SOA) paradigm for their applications [3]. It allows us to
expose the core business logic as services, which are then
orchestrated to implement the business processes using
composite services [4], [5]. This has a number of benefits,
such as loose coupling, platform independence, and
integration capabilities of existing legacy systems. Web
services technology emerged as the de facto standard for
the implementation of services [6].

Adopting SOA as a paradigm itself does not necessarily
solve the problem of provisioning mission-critical processes
in interorganizational settings. However, it can provide some
of the required building blocks as outlined above [7]. A key
challenge in SOA, in particular for service composition

infrastructures, is to develop mechanisms to achieve so-
called self-adaptive and dependable service compositions [8],
[9]. A self-adaptive and dependable composite service is
capable of reacting to changes in the environment [10] and
has the ability to deliver services that can justifiably be
trusted [11].

Quality of service (QoS) is an important aspect of
modeling and managing self-adaptive and dependable
composite services and their individual services [12].
Dependability properties of Web services can be categor-
ized and measured by using QoS attributes from different
providers [13], [14]. In the service composition context, the
QoS of the overall composite service is particularly
important. The QoS of the individual services usually
determines the QoS of the overall composition [15]. Thus, a
single service with bad QoS may cause deteriorating
performance or failure of the composite service.

In our QoS model, we broadly distinguish between two
categories according to their business domain. The first
category includes domain-agnostic QoS attributes used in
numerous business domains and processes. It encompasses
a broad range of attributes, among them performance and
dependability ones such as high availability and through-
put, fast response time, and a minimized planned down-
time of the system [13], [16], [17]. The second category
comprises domain-specific QoS attributes that are only
applicable to certain business domains and processes, such
as voice or data traffic rates or the call setup fee in
telecommunication processes. Typically, such QoS attri-
butes have no meaning in other domains.

A major problem with existing approaches is that current
composition infrastructures only provide limited support for
defining and handling even simple QoS-based adaptations
at runtime [7], [16], [15], [18], [19], [20], [21], [22]. An example
of such a QoS-based adaptation is the replacement or
rebinding of a bad performing service that is part of a

828 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

. O. Moser and S. Dustdar are with the Distributed Systems Group,
Information Systems Institute, Vienna University of Technology, Argen-
tinierstrasse 8, Vienna A-1040, Austria.
E-mail: {Moser, Dustdar}@infosys.tuwien.ac.at.

. F. Rosenberg is with the IBM T.J. Watson Research Center, 19 Skyline Dr,
Hawthorne, NY 10532. E-mail: Rosenberg@us.ibm.com.

Manuscript received 17 Nov. 2009; revised 26 Apr. 2010; accepted 17 Mar.
2011; published online 1 Apr. 2011.
Recommended for acceptance by F. Pohl and C. Ghezzi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2009-11-0357.
Digital Object Identifier no. 10.1109/TSE.2011.43.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

composite service definition with a compatible and better
performing alternative service. Another example is a change
of a QoS attribute or the introduction of a new QoS attribute
during the lifetime of a composite service, especially
domain-specific ones. Handling such adaptations requires
1) mechanisms to define which service should be selected
based on the desired QoS attributes and 2) appropriate
runtime capabilities that define how the newly adapted
composite service can be executed. However, most of these
adaptations currently require a system engineer to manually
reengineer and redeploy the process, which implies a
disruption of the provisioning process.

In this paper, we focus on QoS-based adaptations of
composite services with regard to service selection and
binding. In particular, the proposed approach addresses the
following requirements:

R1. The QoS model implementation should be adaptable
to capture the need to add, remove, or change QoS
attributes at runtime.

R2. The service selection mechanism should support
runtime adaptability to address the need to change
the logic how a service is selected (e.g., based on
changes in the QoS model according to R1 or
changing business requirements). A tailored Do-
main-Specific Language (DSL) should support the
specification of the selection logic.

R3. The adaptations as specified in requirements R1 and
R2 should be carried out at runtime and prevent any
downtime of the composition infrastructure. Addi-
tionally, manual intervention by a developer or
system engineer should not be necessary, e.g., to
undeploy and redeploy the composite service.

R4. The system implementing the selection mechanism
needs to be unobtrusive. This means that they do not
need to be changed when using different composi-
tion engine implementations (e.g., different WS-
BPEL engine implementations).

To address these requirements, we propose a domain-

specific service selection mechanism and system implementation

on top of a VieDAME-enabled WS-BPEL runtime [23]. To
this end, we use the MAPE loop [24] (Monitor, Analyze,
Plan, and Execute) from the autonomic computing area to
achieve the required degree of runtime self-adaptation
capabilities for composite services. In particular, we
leverage an adaptive QoS model implementation in the
sense that it can be extended and changed at runtime. For
the specification of the service selection strategy, we use a
domain-specific language called VieDASSL to implement
so-called selectors. The language can be used by domain
experts to define such runtime adaptable selectors based on
the QoS attributes in the adaptive QoS model. This
approach ensures that changes in the QoS model and
selectors can be handled at runtime without disruption of
the business processes. An evaluation of the proposed
system using a case study from the telecommunications
domain demonstrates the effectiveness of the system. The
evaluation also discusses the main benefits of our approach
with regard to different stakeholders. The proposed
contribution makes the following explicit assumptions

based on our insights and access to expert knowledge in
the telecommunication domain:

. We consider composite services where usually only a
small number of services are replaceable at runtime.

. We assume that only a small number of alternative
services (i.e., max. 1-5) are available for each
replaceable service in a service composition.

. For the QoS model, we assume the units of
measurement for each QoS attribute are fixed and
cannot be dynamically adapted.

. We do not consider autonomic discovery of alter-
native services as part of our approach.

The remainder of this paper is organized as follows:
Section 2 presents an illustrative example from the tele-
communication domain. Section 3 introduces the domain-
specific service selection approach. A detailed evaluation of
our system is discussed in Section 4. Section 5 presents
related work with respect to the main contributions of this
paper. Finally, Section 6 concludes this paper and outlines
some future work.

2 ILLUSTRATIVE EXAMPLE

This section presents the ManagedRoaming (MR) business
process as an illustrative example which is referenced
throughout the paper. The MR process enables the tele-
communications enterprise Phonyfone to implement their
roaming provisioning using a composite service. Thereby,
Phonyfone can offer the best rates to their customers when
they use their cell phones in foreign networks.

Prior to the discussion of the MR process, we explain the
relevant terms from the telecommunication domain. A
subscriber represents a customer in Phonyfone’s information
systems, while a deal represents an orderable service offered
by Phonyfone (e.g., mobile e-mail access or managed
roaming). The term roaming describes a network operator’s
capability to extend their services, both voice and data
related, to a network other than the home network. The
term MSISDN (Mobile Subscriber Integrated Services Digital

Network Number) is, simply put, the cellphone number of a
SIM card. The Subscriber Identity Module (SIM) card is a
removable chip that stores subscriber information in
cellphones. Finally, the IMSI (International Mobile Subscriber

Identity) and the ICCID (Integrated Circuit Card ID) are
identifiers stored on the SIM card and both are globally
unique. The IMSI is the key for the network operator to
identify a subscriber, while the ICCID identifies the SIM
card itself. For a detailed discussion of roaming in wireless
networks, please refer to [25].

2.1 The ManagedRoaming Process

Fig. 1 illustrates the process using a slightly relaxed BPMN
(Business Process Modeling Notation) diagram [26]. This
means that we annotated the diagram with two concrete
roaming partners including their values for certain QoS
attributes. Please note that fault and compensation handling
are not shown for brevity.

Initially, the MR process waits for an incoming
RegisterRoamer message, which instantiates the process.

MOSER ET AL.: DOMAIN-SPECIFIC SERVICE SELECTION FOR COMPOSITE SERVICES 829

The message includes the MSISDN of the subscriber that
wants to order the MR deal.

The first activity maps the subscriber’s MSISDN to the
IMSI by invoking the QuerySubscriber service. This is
necessary because some of the services in the MR process
require the IMSI of the related SIM card. Provided that the
input MSISDN matches a subscriber object in Phonyfone’s
subscriber database, the service returns the details of the
subscriber, including the IMSI.

The next activity checks whether the subscriber already
has an order for the MR deal in Phonyfone’s subscription
platform. The QueryDeal service provides the required
functionality, accepting the MSISDN as an input para-
meter. It returns relevant data of all deals that the
subscriber has ordered.

If there is no order for the MR deal, the process creates it
by invoking the CreateOrder service. It takes the MSISDN
and the desired deal name, e.g., ManagedRoaming, as
input parameters.

The next process activity represents the creation of a
Billing Detail Record (BDR for short). The BDR is required
internally for Phonyfone’s billing and accounting system.

Up to this point in the process execution, only on-
premises services are involved in service interaction. This
means that Phonyfone has full control over the participating
services. The final and most important activity in the MR
process covers the registration of the subscriber in the
foreign network. For this purpose, Phonyfone contracts
several roaming partners. Fig. 1 exemplifies two of these
contractors, IPlus and Phonica. These partner companies
have to offer an interface that abstracts the details of
subscriber registration in the foreign network. The
RegisterRoamerAbroad activity invokes this roaming interface
and provides the MSISDN, the home network provider,
e.g., Phonyfone, and the IMSI and ICCID of the SIM card to
the external partner service. The process designer, who
links the corresponding partner service with the activity in
the MR process, then defines which contracted roaming
partner is used for the RegisterRoamerAbroad activity.

2.2 Nonfunctional Requirements

When considering the nonfunctional requirements of the
MR process, the overall execution time is an important
hard-limit of the process. If it exceeds a certain threshold,
usually a few seconds, the overall call setup will fail. This
results in the worst-case scenario where customers are

unable to use their phones. Thus, process execution time
is crucial, implying that both the availability and the
response time of the partner services are important to the
overall process performance.

Additionally, the external roaming partners have differ-
ent fees and rates associated with their services. The
CallSetupFee are costs that incur during the initial setup of
the roaming call and have to be paid by Phonyfone. The
VoiceTrafficRate and the DataTrafficRate are costs paid by the
customer. They are charged for the actual duration of the call
and the transferred data. Fig. 1 shows sample values for the
aforementioned nonfunctional properties.

From an operational perspective, Phonyfone uses com-
position engines from various vendors. This stems from the
fact that during Phonyfone’s company history, several
acquisitions of smaller telcos have been made, which are
now operating as subsidiaries of Phonyfone. These sub-
sidiaries also run the MR process, but eventually use a
different composition infrastructure for its execution.

Phonyfone’s main objectives are to minimize the costs for
them and their customers and to maximize the overall
performance of the MR process. As a consequence, Phony-
fone needs a system to dynamically adapt their MR process,
independent of which composition engine is executing the
MR process (cf., requirement R4 from Section 1). Thereby,
subscribers can be registered in the foreign network using a
roaming partner service that complies with these objectives.

In this regard, the term dynamic refers to several features
of such an adaptation. First, it must remove the hard linked
dependencies on partner services (cf., requirement R2). As
described above, there are alternative services available for
the RegisterRoamerAbroad activity. However, which ser-
vice is invoked is determined at deployment time or even
during the design of the process. Using another service for
the RegisterRoamerAbroad activity requires process adap-
tations, which typically cause system downtimes where the
MR process is unavailable. Such unavailability hinders
customers using their phones and therefore causes mone-
tary loss and affects Phonyfone’s reputation as a telco
provider. Selecting the roaming partner service and adapt-
ing the MR process at runtime prevents such downtimes (cf.,
requirement R3). Please note that due to contractual
obligations, an autonomic discovery of such alternative
services is not applicable in most telco enterprise scenarios.

Second, rate changes or outages of services cannot be
foreseen, as well as additional nonfunctional requirements
that emerge due to new market requirements. New roaming
partners with better offerings than the currently contracted
partner may enter the market. Therefore, a viable adaptation
solution 1) must be capable of reflecting nonfunctional
requirements that need constant monitoring, such as
response time of partner services, and 2) must provide
corresponding extensibility mechanisms to address newly
emerging nonfunctional requirements (cf., requirement R1).

3 DOMAIN-SPECIFIC SERVICE SELECTION

This section presents our approach for domain-specific
service selection. First, we discuss the fundamental con-
cepts of the proposed system. Second, we integrate these
fundamentals into the overall system design. Finally, we

830 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Fig. 1. ManagedRoaming process.

present a prototype implementation of the system design to
demonstrate its feasibility.

3.1 Theory of Operation

The system design that we will present in Section 3.2
leverages certain conceptual building blocks, which are
extensively discussed in the following three sections. First,
Section 3.1.1 introduces a model for categorizing and
reasoning about service quality. Second, the conceptual
approach for dynamically adapting composite services is
explained in Section 3.1.2. Finally, both of these concepts are
merged into mechanisms that provide declarative manage-
ment of the dynamic adaptations of a composite service, as
presented in Section 3.1.3.

3.1.1 Adaptive QoS Model

The term quality of service can refer to different aspects. In
general, QoS is used to describe service consumer satisfac-
tion. We encounter QoS in our daily routine, be it customer
service in your preferred coffee shop, voice quality in
mobile networks, or the page load time of an online trading
platform. In the following, we explain the different QoS
attributes and how they can be reflected in a QoS model.

Quality aspects differ in many regards, such as measur-
ability and objectiveness. Likewise, diverse domains
feature different requirements with respect to service
quality. This leads to two distinctive features that we will
examine hereafter.

First, QoS attributes differ with respect to determinism.
For certain domains, it might be well suited to observe only
QoS attributes whose values are known in advance. These
values are not intended to constantly change during the
service offering, such as the VoiceTrafficRate from our
ManagedRoaming process. It is contracted by the service
offering party, e.g., IPlus, and the service consuming party,
Phonyfone, prior to the service invocation and will rarely
change. On the contrary, values of other QoS attributes
might change over time. The response time of the roaming
partner services in our ManagedRoaming process is a
dynamic QoS attribute whose values are subject to constant
change. Therefore, we follow related work [16] and
distinguish between deterministic and nondeterministic QoS
attributes. Deterministic QoS attributes are attributes whose
values are known prior to service invocation. Values of
nondeterministic QoS attributes are not known in advance
and require constant monitoring. Table 1 list nondetermi-
nistic QoS attributes supported by our approach. A detailed
discussion of the listed QoS attributes can be found in [17].
Please note that Response Time and Throughput are

Performance-related QoS attributes, whereas Availability
and Accuracy are Dependability-related QoS attributes. The
value rti, where 0 < i < n, denotes one observation of the
response time of a service in a series of n response times of
this service.

Second, QoS attributes can be distinguished regarding
their applicability. In this regard, some nonfunctional
properties, such as reputation or availability, are common
to many service implementations. Such properties are
domain-agnostic in the sense that their applicability is not
restricted to a certain business domain. Domain-specific QoS
attributes, on the other hand, are viable to their specific
business domain only. As an example, consider the
CallSetupFee from our ManagedRoaming process.
Although essential to our process, this attribute is of no
relevance for other processes, such as purchase order or
loan approval scenarios.

To reason about QoS attributes, a QoS model is needed
[16]. Such a QoS model organizes the different QoS attributes
for a particular use case, e.g., a business process such as the
ManagedRoaming process. This model can be arbitrarily
extended to support additional attributes. Fig. 2 exemplifies
a QoS model using the concepts explained above.

It is important to note that Phonyfone, and all other
mobile operators, are subject to certain market situations.
Both regulators as well as marketing requirements can
impose constraints on operators. A regulator could define
the maximum price for text messages originating from a
foreign network to protect consumers from high roaming
fees. On the other hand, marketing departments are often
obliged to react on short-term offers by the competition. In
many cases, being the first operator to launch a new
product or a promotional offer is the key factor that decides
success or failure. As an example, consider Phonyfone
launching a product package that includes the free usage of
a value added service, such as mobile TV. Such mobile TV
solutions are provided by third party media gateways.
Keeping the interenterprise fees between Phonyfone and
the various media gateway partners low is required to make

MOSER ET AL.: DOMAIN-SPECIFIC SERVICE SELECTION FOR COMPOSITE SERVICES 831

TABLE 1
Supported Nondeterministic QoS Attributes

Fig. 2. QoS model for ManagedRoaming.

the product package profitable. However, a media partner
could decide to charge different rates for different content,
e.g., a free news channel in contrast to expensive adult
content, or simply increase the rates on existing content.

All too often, such market situations cannot be foreseen
and additional domain-specific QoS attributes may need to
be added to the QoS model. Ideally, the implementation of
such a QoS model supports runtime adaptability. This
allows us to dynamically tailor the QoS model to specific
needs and domains (e.g., the telco domain). Therefore, we
propose an adaptive QoS model implementation to eliminate
the need for a system downtime when adding, changing, or
removing QoS attributes. Static QoS model implementations
or implementations that allow only design time modifica-
tions do not support the adaptability required by Phonyfone.

3.1.2 Runtime Service Selection with Selectors

When dealing with composite services, the QoS of each
atomic service is a highly influential factor for the QoS of
the whole service composition. In many cases, the unavail-
ability of a single service results in unavailability of the
service composition. For the ManagedRoaming process, this
means that an unresponsive, faulty, or unavailable partner
service would affect the execution time or accuracy of the
whole process. Therefore, we proposed an approach to
facilitate runtime exchange of services during process
execution in our previous work [23]. In particular, it allows
us to substitute an underperforming partner service with a
suitable and reasonably performing alternative partner
service. We presented the concept of selectors to dynami-
cally replace partner service instances by implementing a
specific service selection strategy. Its primary task is to
determine which service, from a set of available alternative
services, matches the service selection strategy best. If none
of the alternative services outperforms the originally
defined service in terms of the service selection strategy,
the selector returns the originally defined service.

The selection strategies reflected by a selector imple-
mentation can range from trivial randomized or single QoS
attribute optimizing strategies to complex strategies where
several QoS attributes need to be included in the selection
decision. When handling multiple QoS attributes in a
selection strategy, it might further be desired to express
conditional selection and weight the different QoS attri-
butes according to their relative importance for the selection
strategy. Besides the actual selection semantics, another
important feature of such a selector component is how and
when the selection strategy needs to be defined. In the
following, we discuss several approaches for selector

implementations. Table 2 summarizes the features of the
selector implementation approaches.

Static Selectors implement a hard-coded selection strat-
egy and certainly represent the simplest solution. They
have the inherent drawback that any change to the
selection strategy implies a system downtime. A modify-
recompile-redeploy cycle and a restart of the process
execution environment are required.

Parameterizable Selectors include parameters that can be
adapted during runtime. As an example, consider a
selection strategy where the average response time of a
service should be minimized and the availability should be
maximized. Assuming that the response time is more
important than the availability, the QoS attributes need to
be weighted. This weighting can be adjusted using
weighting parameters in the selection strategy implementa-
tion. If these parameters are exposed, e.g., through a user
interface, the weighting can be adapted at runtime. This
might be necessary when the requirements for the selection
strategy change. However, there are two major drawbacks
of Parameterizable Selectors. First, implementation specific
know-how is needed to adapt the underlying selection
strategy. Second, if modifications of the selection strategy
cannot be covered via parameter changes, system down-
time for the deployment of the adapted selector implemen-
tation is inevitable.

Scripted Selectors can be “hot-plugged” into the execution
environment at runtime. The source code of the selection
strategy implementation is interpreted during runtime
rather than compiled at design time. Thus, Scripted
Selectors can be leveraged to provide true runtime adapta-
tion of the service selection strategy. However, the im-
plementation of the selection strategy does not abstract
from programming language details. This makes Scripted
Selectors practically unusable for domain experts that are
not capable of the required programming language skills.

Domain-Specific Selectors inherit the runtime deployability
features of Scripted Selectors. However, instead of relying
on a general purpose programming language, Domain-
Specific Selectors leverage a DSL to describe the underlying
service selection semantics at the abstraction level of the
problem domain. Additionally, it overcomes the drawbacks
of the previously listed selector approaches (cf., Table 2)
with regard to ease of strategy adaptability.

3.1.3 A Domain-Specific Service Selection Language

The Vienna Domain-Specific Service Selection Language
(VieDASSL) is a language that implements a domain-
specific selector approach as described in the previous

832 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

TABLE 2
Summary for Selector Implementation Approaches

section. In particular, VieDASSL addresses requirement
[R2] from Section 1 to provide a flexible, yet reasonably
manageable specification language for service selection
strategies. It should allow domain experts to create and
adapt these selection strategies without programming
language know-how. Additionally, it should leverage the
QoS model described in Section 3.1.1 to maximize
flexibility with respect to QoS attributes.

Supported QoS Attributes. For each QoS attribute from
Fig. 2, VieDASSL provides a QoSSymbol that represents the
QoS attribute in the language. Table 3 lists the mapping of
QoS attributes to QoSSymbols supported by VieDASSL and
their related unit of measurement.

For brevity, only nondeterministic QoSSymbols are
shown in Table 3. The full set of QoSSymbols can be
accessed on the project website [27]. However, it is
important to note that the set of supported deterministic
QoSSymbols can be arbitrarily extended during runtime, in
compliance with requirement R1 (cf., Section 1). Further-
more, the QoSSymbols from Table 3 include a hint about
their unit of measurement in their name. When adding
new QoSSymbols to the set of deterministic QoSSymbols,
their name should also include the related unit of
measurement, both to improve traceability and make
QoSSymbols self-explanatory.

The values of the QoS attributes in Table 3 are based on
all available monitoring data for a particular service. In
addition, our approach also provides time-windowed ver-
sions of these QoS attributes. By default, the 5, 10, and
15 minute averages are available. The QoSSymbols of these
time-windowed attributes are equal to the QoSSymbols
from Table 3, with the suffix 5Min, 10min, or 15min added at
the end of the QoSSymbol. As an example, the response
time over the last 10 minutes can be referred to by the
QoSSymbol responseTimeMs10Min.

Language Description. VieDASSL supports three types
of rules that represent the building blocks for defining
service selection strategies. Please note that the service
defined in a business process definition, which is subject to
replacement by alternative services, is hereinafter referred
to as the original service.

Every selection strategy modeled with VieDASSL has at
least one FactorRule. FactorRules are used to calculate a score
for each of the services by considering 1) a QoS attribute,
reflected in a rule by its corresponding QoSSymbol, and 2) a
weight Wj 2 ½0; 1� and

Pk
j¼1 Wj ¼ 1 for k QoS attributes

used in the rules. The weighting factor expresses user
preferences with regard to the considered QoS attributes.
As with all other rules which we will discuss shortly,
FactorRules have to be enclosed in a selection{} block.

Listing 2 shows a VieDASSL selection specification having a
single FactorRule.

Listing 1. EBNF of VieDASSL

1 <SelectionRule> ::= selection

‘{’ <RuleBody> ‘}’

2 <RuleBody> ::= <FactorRule> j
<SumSelectionRule> j
<ConditionalSelectionRule>

3 <SumSelectionRule> ::= <FactorRule>

{<FactorRule> }

4 <ConditionalSelectionRule> ::= ‘inCase(’

<QoSSymbol> ‘,’ <Comparator> ‘,’

<QoSAttributeValue>‘)’

5 {‘ <RuleBody> ’}

6 {‘ <RuleBody> ‘}’

7 <FactorRule> ::= <MinimizingRule> j
<MaximizingRule>

8 <MinimizingRule> ::= ‘min(‘ <QoSSymbol> ‘,’

<QoSAttributeWeighting> ’)’

9 <MaximizingRule> ::= ‘max(‘ <QoSSymbol> ‘,’

<QoSAttributeWeighting> ’)’

10 <Comparator> ::= ‘less’ j ‘greater’
| ‘equals’

11 <QoSAttributeWeighting> ::= ‘0’ j ‘1’ j ‘0’
‘.’<Digit>

12 <QoSAttributeValue> ::= <Float>

13 <Float> ::= <Digit> ‘.’ <Digit> {<Digit>}

14 <Digit> ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ |

‘6’ | ‘7’ |> ‘8’ | ‘9’

15 <Letter> ::= ‘a’ j � � � j ‘z’ | ‘A’ j � � � j ‘Z’
16 <Character> ::= <Letter> |‘_’

17 <QoSSymbol> ::= <Letter> { <Character> j
<Digit> }

Listing 2. Simple Factor Rule

1 selection {
2 max(availabilityPercent, 1)

3 }

A selector configured with the specification from
above would try to maximize the availability QoS
attribute with a weighting factor of 1. Thus, it would pick
the service that has the highest availability of all available
alternative services. Of course, with only a single Factor-
Rule, the weighting is of no relevance to the total score.

To enable the use of multiple QoS attributes in a
VieDASSL definition, a SumSelectionRule can contain several
FactorRules. Similar to [16], we use Simple Additive
Weighting (SAW) [28] to determine the score of each
alternative service. The algorithm is applied in two phases.
First, a scaling phase transforms each considered QoS
attribute value into a scaled attribute value v 2 ½0; 1�. This
process allows for 1) positive and negative QoS attributes and
2) uniform measurement. For positive QoS attributes, higher
values mean higher quality, e.g., service availability. To the
contrary, for negative QoS attributes, lower values mean
higher quality, e.g., service response times. Uniform
measurement enables the range and unit independent
comparison of different QoS attributes, e.g., to compare

MOSER ET AL.: DOMAIN-SPECIFIC SERVICE SELECTION FOR COMPOSITE SERVICES 833

TABLE 3
QoS Attribute to VieDASSL QoSSymbol Mapping

availability, measured as a probability, and response times,
measured in milliseconds. Please note that support for
various manifestations of different units of measurement is
outside of the scope of this work (e.g., a roaming partner
might have listed its CallSetupFee in EUR while another
roaming partner might list the same attribute in USD).
Second, the weighting phase computes the overall quality
score using the values provided by the scaling phase. Thus,
the overall quality score for a service is determined by the
formula

Pk
j¼1 svj �Wj, where svj denotes the scaled value

for a QoS attribute for k different QoS attributes. A detailed
discussion of both the scaling and the weighting phase of
SAW can be obtained from [16].

As an example, the specification shown in Listing 3
defines a VieDASSL selection strategy that focuses on the
service availability QoS attribute, but additionally takes the
average response time into consideration. The higher
importance of the service availability over the average
response time is expressed by the higher weighting value
for the availability attribute.

Listing 3. SumSelectionRule

1 selection {

2 max(availabilityPercent, 0.75)

3 min(responseTimeMs, 0.25)

4 }

In simple scenarios, the SumSelectionRule might be well
suited to model selection strategies that incorporate several
QoS attributes. In scenarios where a threshold for a particular
QoS attribute must be enforced, a ConditionalSelectionRule, as
shown in Listing 4, is applicable. It consists of 1) a
condition, 2) a positive, and 3) a negative rule. The
condition (line 2) includes a QoSSymbol, a comparator,
and a threshold value. If it evaluates to true, the score of
the positive rule (lines 3-5) is returned; otherwise, the
score of the negative rule (lines 7-8) is returned. Moreover,
conditional rules can be nested, which allows for model-
ing complex selection strategies. Listing 4 quotes a
ConditionalSelectionRule that picks the most cost effective
alternative service, provided that the average response
time does not exceed 500 milliseconds. If the threshold is
exceeded, we fall back to the SumSelectionRule described
in Listing 3. Finally, Listing 1 shows the VieDASSL
language specification in EBNF.

Listing 4. ConditionalSelectionRule

1 selection {
2 inCase (responseTimeMs, less, 500.0) {

3 min(callSetupFeeEur, 0.2)

4 min(voiceTrafficRateEur, 0.6)

5 min(dataTrafficRateEur, 0.2)

6 } {

7 max(availabilityPercent, 0.75)

8 min(responseTimeMs, 0.25)

9 }
10 }

Selection Postprocessors. Under certain conditions, a
Selector that naively applies the score-based ranking
mechanism described above can face one considerable
problem. Choosing the top scored alternative service for

each process invocation can overload the selected alter-
native service in very high load scenarios. This renders the
runtime service selection useless or even making the
situation worse. To address this and similar issues, our
Selector approach supports the concept of Selection Post-
processors. A Selection Postprocessor is provided with the
map of alternative services and their related scores. It
performs an additional selection among these top scored
services. One approach for such a Selection Postprocessor
would be a round-robin selection among the top ranked
services. Another approach, the weighted randomized selec-
tion, is described next.

A prerequisite for a reasonable weighted randomized
selection is that the score of the alternative services that are
subject to the selection does not fall below a certain relevance
threshold. This prevents bad performing services from being
considered for the selection. To explain our approach for
this problem, we assume an additional roaming service
provider, Roamwave. The corresponding scores are listed in
Table 4.

The table also features the related selection probabilities

for each alternative service provider. For the example, the

relevance threshold has been set to 0.20, meaning that only

services that have a score above or equal tominimumScore ¼
scoremax � ð1� rtÞ where scoremax is the highest score of all

alternative services and rt is the relevance threshold are

taken into account for the weighted random selection. As the

score of the Roamwave partner service is below

minimumScore ¼ 150, it is not considered further and its

selection probability is 0. The probability for a remaining

service S0 is calculated by
sjPn

i¼0
si

for n remaining alternative

services and sj being the score of S0.
Algorithm 1 shows the simplified algorithm in pseudo-

code. The algorithm is provided with a map structure that
holds service references and their related scores (SCRS) as
well as the relevance threshold parameter (RT). Lines 2-5
initialize the required data structures. Line 6 calculates the
minimum score for a service to be eligible for consideration
based on the relevance threshold parameter RT . The first
loop (lines 7-9) calculates the cumulative score of the
available services. The second loop (lines 10-13) calculates
the selection probability for each service and stores this
information in the probabilities map. Finally, the third
loop (lines 14-24) determines a candidate service. First,
Lines 16-19 check if a service is eligible for selection using
the relevance threshold as described above. Second, by
evaluating if the difference between a random number
random (where 0 � random � 1) and the service probability
probability (where 0 � probability � 1) is positive (line 21), a

834 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

TABLE 4
Service Scores for Weighted Randomized Selection

service is finally chosen. By default, the algorithm returns
the service with the highest score (Line 25).

Algorithm 1. Weighted Random Selection

1: function WEIGHTEDRANDSELECTION (SCRS, RT)

2: probabilities ; . probabilites is a map

structures

3: totalScore 0

4: random RANDOM(1) . random value

between 0 and 1

5: defaultService FINDMAXSCORESERVICE(SCRS)

6: minimumScore maxðSCRS:valuesÞ�ð1�RT Þ
7: for all servicei 2 SCRS do

8: totalScore SCRSðserviceiÞ þ totalScore
9: end for

10: for all servicei 2 SCRS do

11: probability SCRSðserviceiÞ=totalScore
12: probabilitesðserviceiÞ probability

13: end for

14: for all servicei 2 probabilities do

15: probability probabilitiesðserviceiÞ
16: scorei SCRSðserviceiÞ
17: if scorei < minimumScore then

18: continue

19: end if

20: random random� probability
21: if random < 0 then

22: return servicei
23: end if

24: end for

25: return defaultService

26: end function

The following section integrates the adaptive QoS model
and the domain-specific service selection language we
presented above and examines the features of the resulting
service selection runtime.

3.2 A Domain-Specific Service Selection Runtime

For the design of such a domain-specific service selection
runtime, a major goal was that the resulting system should
be as unobtrusive as possible (cf., requirement R4 from
Section 1). When referring to unobtrusiveness, we wanted
to achieve two important system features. First, the service
selection runtime should be implementation agnostic.
Although the prototype implementation discussed in
Section 3.3 refers to BPEL as the underlying service
composition system, the concepts and patterns incorporated
into our system design are generic and, to a large extent,
applicable to any message-based service composition
technology. Second, the orchestrated composition runtime
should be unaware of the service selection runtime. No
modifications in the composition runtime should be
necessary for the service selection runtime to cooperate.
These two requirements imply that a viable approach has to
operate on a level that is common to all service composition
runtimes, the message level.

3.2.1 Architectural Approach

As outlined in Section 1, we leverage the MAPE loop to
achieve runtime self-adaptation capabilities. The following

architectural description references system components
using terminology from the Autonomic Computing (AC)
context. Due to space restrictions, only the most important
terms are defined in the following. For detailed coverage of
architectural aspects of AC related systems, the please refer
to [24], [29].

For the discussion of the system architecture, the most
important AC related terms are the MAPE loop, Sensors,
and Effectors. The Monitor part of the MAPE loop is
responsible for collection and aggregation of details about a
service composition, whereas the Analyze part is respon-
sible for correlating and analyzing the symptoms provided
by the Monitor part (i.e., when does a service composition
need to be adapted). The Plan and Execute parts are then
responsible for planning actions to achieve goals (i.e., what
needs to be adapted in the service composition) and
applying these actions (i.e., how a service composition
needs to be adapted). Finally, Sensors and Effectors are
used to obtain data about the service composition, and to
perform adaptive operations on a service composition.

The system we propose introduces an Interception and
Adaptation Layer (IAL), as displayed in Fig. 3. With regard to
AC, it resembles the responsibilities of Sensors and
Effectors. The IAL is a generic tool enabling the inspection
and adaptation of message exchange. This message ex-
change is triggered by an arbitrary Composition Runtime,
which relies on a Composition Processor to instantiate
business processes defined in a composition language.
The Messaging Layer is responsible for the creation and
processing of inbound and outbound messages. A Composi-
tion Runtime Adapter is used to encapsulate all implementa-
tion specific details of the orchestrated Composition
Runtime. It leverages the IAL and provides a generic
message context to other components, such as the Selector,
Monitor, and Transformer components.

Collecting and processing QoS information for the
services under consideration, as well as persisting the
information in a Datastore, lies in the responsibility of the
Monitor component. On each service invocation triggered
by the underlying business process, the Monitor creates an
operation invocation event. Such events hold information
about the execution time, a timestamp, and a success
indicator. The computation of the supported nondetermi-
nistic QoS attributes (refer to Table 1) is based upon this
data. The Monitor also stores service metadata extracted
from the message context, such as endpoint addresses, to
reflect all services involved in process execution in the
Datastore. Therefore, it effectively handles the Monitor and
Analyze parts of the MAPE loop.

As previously described, the Selector component is
responsible for determining an appropriate alternative
service for an original service. The decision finding is based
on certain QoS attributes that serve as input for a selection
strategy defined in VieDASSL. This implies that alternatives
for an original service need to be stored, together with the
related QoS data. In combination with the Transformer
component (described below), the Selector covers the Plan
and Execute parts of the MAPE loop.

In case the original service and the related alternative
services do not adhere to the same interface, this interface

MOSER ET AL.: DOMAIN-SPECIFIC SERVICE SELECTION FOR COMPOSITE SERVICES 835

mismatch needs to be considered and compensated accord-
ingly. The Transformer component is required to apply
interface mediation to enforce compliance with the service
interface as defined in the process. As an example, the IPlus
and the Phonica roaming partner services provide equal
functionality with regard to the ManagedRoaming process.
However, this does not necessarily mean that both services
provide the same interface. In particular, the request
messages expected by the Phonica service could differ in
their contents from the messages expected by the IPlus
service. The same is true for response messages provided by
these partner services. Therefore, to use the Phonica roaming
service instead of the service provided by IPlus, the
Transformer applies certain transformation rules for both
outgoing and incoming messages. Such an approach loosens
up the constraints for alternative services because it only
requires semantical equivalence, not necessarily syntactical
equivalence. For our illustrating example, this means that
newly emerging roaming partners can be contracted by
Phonyfone without the need to adapt the MR process to
deviant interfaces provided by these partners.

The Monitor, Selector, and Transformer components
leverage a Data Access layer to store and retrieve data
persisted in the Datastore, such as the QoS information
associated with a partner service, the available alternative
services for a particular service, or the transformation rules
for interface mediation.

When considering the service selection rules defined in
VieDASSL, the resulting VieDASSL Rule is a tree of rules,
with its root rule assigned to the Selector component. The
Selector invokes this top level rule for each alternative
service, resulting in the root rule recursively invoking all its
child rules to evaluate the score of each relevant service.

The (re)creation of such a VieDASSL Rule lies in the
responsibility of the Rule Builder, which parses and verifies
selection strategy definitions.

The selection strategy definitions that serve as input for
the Rule Builder are passed in by the Remote Admin. The
Remote Admin decouples the Service Selection Runtime
from the User Interface. It enables the user to perform service
management tasks such as defining the service selection
strategies, preparing services for runtime replacement by
marking them replaceable, importing alternative services,
displaying and comparing QoS data. The User Interface
provides an authoring system that supports the domain
expert with syntax highlighting and statement completion.
Finally, a QoS model browser displays available QoSSym-
bols and supports the domain expert in creating additional
QoSSymbols as needed.

3.2.2 Conceptual Approach

Applying our domain-specific service selection runtime to
the ManagedRoaming process enables users 1) to monitor
the QoS of the partner services and 2) to define a selection
strategy for the roaming partner service. The domain expert
does not have to deal with a complex setup to access QoS
data of the services involved in process execution. Instead,
she can concentrate on the analysis of this information. To
leverage the service selection features for the Roaming
partner service, the domain expert selects the related service
from the list of services captured by the Monitor and marks
it replaceable. Only services that are marked replaceable are
considered to be replaced by alternative services. What
follows is the import and assignment of additional services,
e.g., the Phonica service. Then, a selection strategy needs to
be defined. The strategy shown in Listing 4 provides a

836 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Fig. 3. Architectural approach of a domain-specific service selection system.

good1 starting point, as it tries to maximize performance
and dependability as well as takes cost efficiency into
account. Clearly, the considered domain-specific attributes
need to be added to the QoS model by defining them in
the User Interface. This is done by creating a QoSSymbol
for the attribute (e.g., CallSetupFee, cf., QoSSymbol in
Listing 1) and defining a value range. The new QoS
attribute is immediately available in the service selection
runtime. Its values for relevant service operations, e.g.,
registerRoamer, can be set in the User Interface, and the
QoSSymbol can be used in service selection strategies.
Finally, transformation rules need to be specified since the
interface of the originally used roaming partner service
(IPlus) does not match the Phonica service interface.

3.3 Implementation

The previous section discussed the design of the domain-
specific service selection runtime. In this section, we briefly
present a Java-based prototype implementation for BPEL,
and highlight important technical details.

Fig. 4 outlines the overall system architecture of the
Vienna Dynamic Adaptation and Monitoring Environment
(VieDAME) using a UML component diagram. VieDAME
provides the basis for the implementation discussed here-
inafter. In VieDAME, supporting a vendor’s BPEL imple-
mentation implies providing an Engine Adapter for the
specific product. Currently, ActiveBPEL [30] is fully
supported and support for Apache ODE [31] is under
development. The experiments presented in Section 4 are
based on ActiveBPEL 3.0.

Conceptually, the BPEL Runtime and the VieDAME
Runtime are deployed together in a JEE Runtime such as
JBoss Application Server [32]. After the deployment of a
BPEL process definition, the BPEL Runtime creates a
process instance, which is executed by the BPEL Processor.
A SOAP Stack, such as Apache Axis, is used by the BPEL
processor to handle <invoke> activities. This type of
activity triggers communication with external services.

In VieDAME, many components leverage Aspect Oriented
Programming (AOP) to provide their functionality. As an
example, an Engine Adapter is comprised of a Monitoring
Adapter, a Selection Adapter, and a Transformation Adapter.
These components are implemented as Interceptors, woven

into the base system, i.e., the BPEL Runtime, by the Aspect
Weaver. This allows us to transparently adapt and extend
the message flow in an arbitrary way, without explicit
changes in the base system. Although the code base of the
BPEL Runtime could be extended by traditional means, i.e.,
by using subclassing, changes in the base system would
always imply changes in the VieDAME components, e.g.,
the Engine Adapter. By using AOP, we minimize the
coupling between our system and the underlying composi-
tion runtime. Moreover, AOP allows for selectively en-
abling and disabling certain features of the VieDAME
Runtime. Therefore, in case certain environments require
monitoring features only, it is possible to completely disable
the Selector and Transformer components.

Previously, we described how the Monitor component
analyzes the message context and checks whether a
representation of the related process, service, and operation
was already captured and persisted. For the implementa-
tion of such a Monitor component, we decided to
distinguish between real time and historical monitoring data.
Historical data, which are primarily used for visualization
in the user interface, are stored in a relational database (DB).
Details about the write-behind semantics for historical data,
which were implemented to decrease database load, can be
obtained from [23]. To handle (near) real-time information,
we incorporated a Complex Event Processing (CEP) [33]
engine. In VieDAME, CEP is provided by the Open Source
project Esper [34], which is comparable to commercial
counterparts, both in terms of language expressiveness and
performance [35]. From a technical point of view, the
Monitor component emits operation invocation events that
are considered by the Esper runtime. Besides the low
processing times Esper can provide, another advantage lies
in the ability to define views on the continuous stream of
events that are emitted by the Monitor. This allows us to
restrict the time window that is considered for the
calculation of certain QoS data. As an example, the
following statement selects the average response time of
the QuerySubscriber service during the past 5 minutes:

Listing 5. EPL Example

1 select

2 avg(executionTime)

3 from

4 OperationInvocationEvent.win:time(5 min)

5 where

6 operation.name = “querySubscriber”

Please note that the statement above is not complete
and is listed for demonstration purposes only. As Listing 5
highlights, Esper features a SQL like Event Processing
Language (EPL), which is capable of expressing temporal
and logical context such as the average response time over
the past 5 minutes in the given example. The integration of
real time and historical data is provided by the Esper’s
SQL support. It uses the Java Database Connectivity
(JDBC) standard and allows us to join real-time event
streams against JDBC data sources. Moreover, these JDBC
data sources are fed with the real-time data in the write-
behind fashion mentioned above. This turns the real-time
data into historical data after a certain amount of time.

MOSER ET AL.: DOMAIN-SPECIFIC SERVICE SELECTION FOR COMPOSITE SERVICES 837

Fig. 4. VieDAME system architecture.

Regarding the Selector component, our implementation
makes extensive use of the scripting support [36] of
current Java Virtual Machines (JVM). In particular, we
leverage the ExpandoMetaClass feature of Groovy [37],
as well as the Builder Pattern [38], to implement the
required runtime adaptiveness. The Adaptive QoS Model is
persisted in the DB and can be accessed and modified by
the object/relational mapping (ORM) support provided by
VieDAME’s Infrastructure Core described below. The
interface mediation that the Transformer component pro-
vides is built upon XSLT transformations. The related
stylesheets are also stored in and retrieved from the
VieDAME DB.

The MAPE Components discussed so far all rely on the
Infrastructure Core of VieDAME. As its name implies, it
provides infrastructural services like ORM (Hibernate
[39]), task scheduling (Quartz [40]), interfaces for remote
administration as well as the dynamic language support.
The Spring Framework [41] is used to configure and wire
all components.

From an end-user perspective, all interaction with
VieDAME is done via the VieDAME User Interface (UI).
The JBoss Seam [42] based user interface covers all
functionalities required to leverage VieDAME as a
domain-specific service selection runtime. As an example,
the actual Selector definition is supported by an inte-
grated editor based on EditArea [43], which features
syntax highlighting, auto completion for the VieDASSL
syntax, and a special context menu that serves as a QoS
model browser.

4 EVALUATION

The following experiments are based on a BPEL imple-
mentation of the ManagedRoaming sample process from
Section 2. We present the details of the evaluation scenario
setup, followed by the results of our performance tests, and
finally, we discuss the findings of the evaluation.

4.1 Scenario Setup and Results

To provide a high level of isolation for the performance
measurements, three different hosts took part in the setup.
In particular, VieDAME was deployed on a dedicated host
so as not to bias the results by the processing time the
ManagedRoaming Web services and the LoadRunner setup
needed. 1) An Intel Core2Duo clocked at 2.66 GHz was
used to host the ActiveBPEL BPEL engine and the
VieDAME instance, featuring 4 GB of main memory.
2) The orchestrated Web services that took part in the
BPEL process were installed on a 2.6 GHz AMD X2 5050e-
based machine, equipped with 2 GB of RAM. 3) Finally, the
LoadRunner console and load generator were hosted on a
2.4 GHz Intel Core2Duo laptop, backed by 2 GB memory.
Gigabit Ethernet was used to connect the three machines.

Except for the Windows Vista Enterprise-based laptop that
hosted the LoadRunner installation, all other components
were running Linux 2.6.30. JBoss Application Server 4.2.3 GA
was used as the JEE container for ActiveBPEL and
VieDAME. The database was installed on the VieDAME
host. Postgres 8.1 was used.

The Web service framework JBossWS [44] was used to

create JAX-WS compliant implementations for the partner

services mentioned in Section 2.1. To achieve realistic

numbers regarding the throughput and response times of

the participating services, every Web service supports an

additional setQos() operation. This operation allows us to

dynamically set certain attributes, such as processing delay or

error probability, together with a random factor to simulate

service quality. For the exact parameter values assigned to the

Phonyfone-hosted Web service instances, please refer to

Table 5. The given delay is an upper bound; the real delay is

calculated using the formula delay � random:nextIntðfactorÞ
100 .

The commercial, industry-leading load testing suite HP

LoadRunner [45] was the tool of choice to create a realistic

high load scenario. Three different test schedules were

created, featuring 25, 50, and 100 concurrent virtual users.

Due to length restrictions, only the results of the 50 and

100 users scenarios are shown below. A test duration of

50 minutes, with an additional ramp up time for the virtual

users, was set. Moreover, a randomized pacing time

between 1,000 and 2,000 ms was applied between con-

secutive requests. The input MSISDNs for the process

instantiating register requests were taken randomly

from a predefined list.
Similarly to our previous test setups (refer to [23]), the

tests were run in four different configurations. In stage 1, s

default ActiveBPEL instance was stressed, with the Vie-

DAME extension completely disabled; in stage 2, VieDAME

was stressed in a monitoring-only configuration to highlight

the performance penalty introduced by the monitoring

capabilities (cf., Section 3.2.1). The monitoring-only config-

uration was created by disabling the selection and

transformation adapters (cf., Section 3.3); in stage 3, a

VieDAME enabled ActiveBPEL instance featuring an

response time Static Selector that was tested; and finally,

for stage 4 the VieDASSL Selector shown in Listing 6 was

set up. This conditional selector tries to minimize the

CallSetupFee, VoiceTrafficRate, and DataTrafficRate in case

the average response time of the related operation is lower

than 400 ms over the last 5 minutes. If the response time

exceeds the 400 ms threshold, the selector picks the service

that provides the lowest 5 minute average response time as

well as the highest availability of all alternative services. For

the VieDAME enabled test stages, an extended Transformer

was configured to compensate the interface mismatch

between the IPlus roamer registration service and the

Phonica roamer registration service. This means that the

full set of VieDAME features, including Monitoring, Service

Selection, and Interface Transformation, was stressed.

838 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

TABLE 5
Partner Service QoS Attributes

Listing 6. VieDASSL Selector for ManagedRoaming

1 selection {

2 inCase(responseTimeMs5Min, less,

400.0){

3 min(callSetupFeeEur, 0.3)

4 min(voiceTrafficRateEur, 0.4)

5 max(dataTrafficRateEur, 0.3)

6 } {

7 min(responseTime5MinMs, 0.49)

8 max(availabilityPercent, 0.51)

9 }
10 }

During the load test, we simulated a service outage to
highlight the real-performance gain in process execution
time when replacing a slow service with a reasonable
performing alternative. It is assumed that the service
invoked by the RegisterRoamerAbroad activity, e.g., IPlus,
provides two service instances which are hidden behind a
load balancer. This is a common approach to increase
service performance and dependability in real-world
applications. For our experiment, we assume that one of
the two service instances behind the load balancer fails.
Therefore, the load balancer excludes the faulty service
instance from its service queue. This means that the
remaining instance must service all incoming requests,
resulting in higher response times for the client, i.e., the
BPEL process.

SoapUI [46] was used to schedule the outage by creating
a test case that includes only two test steps: 1) A delay test
step that introduces a 25 minute wait state, and 2) the actual
invocation of the setQos() operation to increase the
processing delay of the RegisterRoamerAbroad partner
service. The default values, i.e., before the service outage,
for the setQos() operation, as well as the values during
the outage simulation for 50 and 100 user scenarios are
listed in Table 6. The delay factor was set to 90 in all cases.
Furthermore, the table also lists the values of the rates and
fees that are considered for service selection by the stage 4
VieDASSL Selector.

Based on the values from Table 6, the Static Selector used
in the stage 3 setup favors the default IPlus service due to
slightly better response times. The VieDASSL Selector of
stage 4 chooses the Phonica service since it does not violate
the configured response time threshold and offers better
domain-specific QoS.

Of course, a process executed in the stage 1 and stage 2
scenarios can only invoke the default (IPlus) service. Due to
these preferences, we increased the processing time of the

IPlus service in the stage 1 and stage 2 runs during the
service outage simulation to 1,500 ms (50 users scenario)
and 2,500 ms (100 users scenario), while for the stage 4 run,
we increased the processing time of the Phonica service to
1,500 and 2,500 ms for the 50 and 100 users scenarios,
respectively.

4.2 Discussion and Findings

Fig. 5 illustrates the results of the load tests. The first
column shows the results for the 50 users scenarios, while
the second column presents the numbers for the 100 users
scenarios. The two upper diagrams display the average
transaction response time (since the LoadRunner console
checks the validity of the response, this can also be referred
to as the RoundTripTime [17]). The diagrams in the middle
highlight the transactions per second, i.e., the number of
completed ManagedRoaming process executions per sec-
ond. Finally, the lower two diagrams show the average CPU
usage during the test runs. Table 7 summarizes the
numbers for the 100 users scenario, as well as the normal-
ized costs incurred by the roaming partner service invoca-
tions that have to be paid by Phonyfone.

The results before the service outage at 25:00 show a
processing overhead introduced by VieDAME. While the
results of the stage 1 and 2 test runs show that the impact of
the Monitor component on overall system performance is
vanishingly small, the performance penalty of the stage 3
and 4 scenarios is not negligible. Results from these stages
show a lower number of transactions per second (TPS), a
higher average response time (AVGRT), and a higher CPU
usage. While the slight performance penalty in both TPS
and AVGRT seems to grow in favor for the standard
ActiveBPEL instance in scenarios with a higher number of
concurrent users, the CPU usage remains almost constant.
Moreover, the results for the stage 3 setup and the stage 4
setup are almost identical, meaning that the components
involved in the domain-specific service selection do not
introduce any additional processing overhead. During the
service outage (from 25:00 on), the results clearly show the
performance optimizing characteristics of the VieDAME
setups. The high response time of the IPlus roaming partner
results in higher AVGRT and a lower number of TPS in the
standard ActiveBPEL environment for both the 50 and
100 users scenarios during the remainder of the test runs. In
contrast, both the stage 3 VieDAME tests as well as the
stage 4 results show only a short period of lower process
performance caused by the outage. For both VieDAME
scenarios, overall process performance is brought back to
where it was for the rest of the load test. However, the
stage 4-based process executions have two advantages over
the stage 3 VieDAME installation. First, the domain-specific
selector minimizes the domain-specific QoS aspects asso-
ciated with the roaming partners, while tracking both the
response time and availability of the alternative roaming
service providers. Thus, the domain-specific selector effec-
tively saves costs while not compromising process perfor-
mance in terms of availability and execution time. Second,
when comparing the time needed for the selector to switch
over to a better performing alternative, the time-window-
based QoS features that were enabled in the stage 4 setup
can considerably minimize the critical time frame where

MOSER ET AL.: DOMAIN-SPECIFIC SERVICE SELECTION FOR COMPOSITE SERVICES 839

TABLE 6
Roaming Partner QoS Settings

process performance is affected by the service outage. The
domain expert can also adjust the selector thresholds and
observation periods, e.g., last n invocations instead of a
fixed time period, in case of changed requirements.

Besides performance and dependability advantages,
other main benefits of our approach have to be considered
with regard to the stakeholders. From a system engineer’s
perspective, who leverages VieDAME as a framework,
choosing the message level as the layer for interception
and adaptation of service interaction results in broad
compatibility with existing and future composition plat-
forms. This design decision also minimizes potential side
effects compared to operating on other abstraction levels,
such as the in-memory process representation or the schema
level. Additionally, the clean component oriented architec-
ture of our approach can be easily extended to cover
additional requirements.

Considering the domain expert perspective, our ap-
proach provides an intuitive and goal oriented language to

describe domain-specific service selection requirements.
The main advantage of leveraging VieDASSL is the
achievement of a clear separation of concerns in large
enterprises. Domain experts should not be required to learn
a programming language to define service selection
strategies. In fact, they should focus on the business-related
aspects of service selection. Moreover, the runtime adapt-
ability features of VieDASSL and the underlying QoS
model implementation address very short-term market
requirements. These requirements might be imposed by a
regulator or law enforcement, but also by customer feed-
back or a competitor’s new offering. Minimizing time to
market (TTM) is crucial, not only for telco enterprises as
shown in this paper, but for the majority of other
businesses. Our approach can be leveraged to effectively
minimize TTM, resulting in a key advantage in today’s
highly competitive businesses.

5 RELATED WORK

There is a recognizable trend that SOAs are becoming
mainstream and the underlying infrastructures, such as
composition middleware, cloud platforms, and services,
increasingly adopt principles of self-adaptive software
systems [10]. The benefits are software applications that
are better manageable and more robust toward require-
ments changes during their lifetimes, which in turn reduces
the operational costs. Software applications adopting self-
adaptation mechanisms typically implement an adaptation

840 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

Fig. 5. Response times and transactions per second during VieDAME Loadtest.

TABLE 7
100 Users Scenario Results Summary

loop, consisting of several process, sensors, and effectors
[12]. Variants of this adaptation loop are the MAPE-K loop
from the Autonomic Computing space [24], [29], as
introduced in Section 3.2, or adaptation management,
introduced by Oreizy et al. [10].

In the following, we focus on related approaches from
the Service-Oriented Computing [4] context that implement
parts or the complete adaptation loop and compare it to our
work. We categorize them according to five criteria, as
illustrated in Table 8. For each criterion, we additionally
show the specific MAPE phase to illustrate where the
proposed approach fits into the adaptation loop. We use the
abbreviations M, A, P, E as described in Section 3.2. The QoS
Model criteria identifies whether deterministic and non-
deterministic QoS attributes are supported. The remaining
subcriteria classify whether the QoS model implementation
is extensible at design and/or runtime. QoS Monitoring
identifies whether an approach supports monitoring of real-
time QoS data within a composition and whether temporal
aspects are considered (e.g., the average response time over
the last 5 minutes or 100 measurements). The next two
criteria address the Selector Specification and Adaptation. The
classification of the selector specification roughly follows
the taxonomy from Delgado et al. [49]. We leverage
language-based approaches (e.g., based on an imperative,
object-oriented, or functional language) or approaches
based on a logic. The adaptation subcriteria define whether
a selector can be dynamically adapted at runtime or is just
simply adaptable at design-time, thus requiring a redeploy
and reload of the process. Finally, Service Mediation
describes whether the approach is able to deal with service
interface heterogeneities. We distinguish between 1) simple
message-based mediation, where the original message can
be transformed to the message expected by the target
service (e.g., using XLST), and 2) mediation flows, where
the mediation can have multiple steps and even call other
services as part of the mediation execution (similar to what
is supported by an Enterprise Service Bus [50]).

The approach presented by Baresi et al. [19] and Baresi
and Guinea [47] shares many commonalities with our
approach. They propose the Web Service Recovery Language
(WSREL), which allows us to define complex recovery
strategies that include retry and rebind of Web services.

These recovery strategies can be seen as some form of
selectors that can be defined at design-time; however, they
are not adaptable at runtime. In [51], the same authors focus
on service selection approaches where self-healing of service
compositions is the primary concern.

Charfi and Mezini [20] propose an AOP extension for
BPEL by defining a simple pointcut language in XML.
Although they focus on different QoS attributes—specified
by the Web service stack, e.g., transactions, reliable
messaging, and security—their AOP approach can be used
to implement selectors which can be adapted at design-
time only.

Erradi et al. [21] propose an adaptive middleware with a
policy-aware selection mechanism. They have a fixed set of
QoS attributes that they can measure and use in the
adaptation policies. These policies can only be adapted at
design time.

Zeng et al. [16] proposed a foundational approach for
QoS-aware service selection and optimization of composite
services. Their approach uses a small set of given QoS
attributes that can be used as part of the optimization. The
selection of a specific service is determined by the
optimization algorithm and cannot be adapted without
reexecuting the optimization. Conceptually similar ap-
proaches have been proposed in [52], [53], [54], [55], [56].
However, most approaches use different service selection
techniques to optimize the overall QoS of a composition
(e.g., skyline computation [56]).

Moscinat and Binder [22] focus on a transparent runtime
adaptability of BPEL processes based on a fixed set of QoS
attributes. Their main approach is to dynamically adapt the
services in a BPEL process (both stateless and stateful) by
augmenting the BPEL code with service selection code at
deployment time. This implies that they cannot dynami-
cally adapt the service selection logic.

Michlmayr et al. [48] present VRESCo, a QoS-aware
middleware that addresses adaptability of service-oriented
applications. They propose several infrastructure compo-
nents and services including dynamic binding and invoca-
tion, querying and composition that are based on a unified
metadata model. Service selection can be specified by
formulating service queries that return a rebinding proxy
which implements different QoS-based rebinding strategies

MOSER ET AL.: DOMAIN-SPECIFIC SERVICE SELECTION FOR COMPOSITE SERVICES 841

TABLE 8
Comparison of Existing Approaches

(e.g., on demand, on invocation, etc.). The service selection
logic is predefined by choosing among a range of selectors,
depending on the application scenario and its need for
continuous rebinding.

Table 8 clearly shows that none of the related approaches
supports runtime adaptation of the QoS model and selector
implementations. This enables us to add, remove, or change
attributes within the QoS model implementation and use
the newly added QoS attributes in a selector logic without
any downtime of the overall infrastructure. This is crucial,
especially for high-availability environments such as the
telecommunications example from Section 2.

6 CONCLUSION

This paper discussed our approach for domain-specific
service selection for composite services. An authentic
business process was used to guide through the explana-
tions and to show the practical relevance of our system. Our
prototype implements the concepts we presented for BPEL
compliant systems. However, operating on the message
level enables the application of our approach for a vast
majority of current and future composition platforms. By
using AOP as the technology for extending a given
composition runtime, our system is extensively unobtrusive
to orchestrated composition runtimes.

We introduced a DSL tailored for the task of specifying
selection strategies based on an adaptive QoS model
implementation. Both the selection strategies and the
underlying QoS model implementation support runtime
adaptability. These system properties maximize respon-
siveness to evolving selection strategy requirements as well
as minimize the need for system downtimes. The proposed
system was tested and evaluated using a case study from
the telecommunication domain. The evaluation showed a
certain performance penalty, given the assumptions for the
system as outlined in Section 1. However, this penalty can
be neglected when considering the real performance gain
that the adaptive features of our service selection system
can render. We also believe, although not validated, that the
system performs well when the number of alternative
services is higher (e.g., around 50) because the underlying
service selection code is not computationally expensive.

For our future work, we plan to evaluate the perfor-
mance of our system with different BPEL runtimes. This
will also lead to additional engine adapters that will be
made available. Moreover, we will examine how service
composition approaches other than BPEL can be integrated
with our prototype. Another area of improvement is
support for different units of measurement for VieDASSL
and our adaptive QoS model implementation. This feature
will further increase the number of applicable alternative
services as it enables different units for cost and time. We
will continue to investigate how the selection postproces-
sing approach helps to solve specific problem scenarios
where choosing the top scored service does not lead to
optimal results. Our research will also focus on the event-
driven monitoring capabilities that are incorporated into
our prototype. Research will cover how temporal and
logical context can be reflected. This is a prerequisite to
handling complex monitoring requirements such as detect-
ing fraudulent request patterns based on the real-time
analysis of invocation traces.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Community’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement

215483 (S-Cube). The authors would like to express their

gratitude to Markus Wilthaner for the prototype imple-

mentation of VieDASSL. Additionally, they would like to

thank the anonymous reviewers for their fruitful comments.

REFERENCES

[1] I.-L. Yen, H. Ma, F.B. Bastani, and H. Mei, “QoS-Reconfigurable
Web Services and Compositions for High-Assurance Systems,”
Computer, vol. 41, no. 8, pp. 48-55, 2008.

[2] C. Huemer, P. Liegl, R. Schuster, H. Werthner, and M. Zapletal,
“Inter-Organizational Systems: From Business Values over Busi-
ness Processes to Deployment,” Proc. IEEE Second Int’l Conf.
Digital Ecosystems and Technologies, pp. 294-299, 2008.

[3] R. Altman, “SOA Overview and Guide to SOA Research,” Gartner
Research Report (ID Number: G00201650), July 2010.

[4] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the Art and Research
Challenges,” Computer, vol. 40, no. 11, pp. 38-45, Nov. 2007.

[5] T. Erl, SOA Principles of Service Design. Prentice Hall PTR, 2007.
[6] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D.F.

Ferguson, Web Services Platform Architecture: SOAP, WSDL, WS-
Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More.
Prentice Hall PTR, 2005.

[7] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S.
Dustdar, “Towards Recovering the Broken SOA Triangle—A
Software Engineering Perspective,” Proc. Second Int’l Workshop
Service Oriented Software Eng., pp. 22-28, Sept. 2007.

[8] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl,
“A Journey to Highly Dynamic, Self-Adaptive Service-Based
Applications,” Automated Software Eng., vol. 15, pp. 313-341,
http://dx.doi.org/10.1007/s10515-008-0032-x, 2008.

[9] Z. Zheng and M.R. Lyu, “A QoS-Aware Fault Tolerant
Middleware for Dependable Service Composition,” Proc. IEEE/
IFIP Int’l Conf. Dependable Systems Networks, pp. 239-248, July
2009.

[10] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D.S. Rosenblum, and A.L. Wolf, “An
Architecture-Based Approach to Self-Adaptive Software,” IEEE
Intelligent Systems and Their Applications, vol. 14, no. 3, pp. 54-62,
May/June 1999.

[11] A. Avizienis, J.-C. Laprie, B. Randell, and C.E. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Trans. Dependable and Secure Computing, vol. 1, no. 1, pp. 11-
33, Jan.-Mar. 2004.

[12] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape
and Research Challenges,” ACM Trans. Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 1-42, 2009.

[13] D.A. Menasce, “QoS Issues in Web Services,” IEEE Internet
Computing, vol. 6, no. 6, pp. 72-75, Nov./Dec. 2002.

[14] A. Mani and A. Nagarajan, “Understanding Quality of Service for
Web Services,” http://www.ibm.com/developerworks/library/
ws-quality.html, Jan. 2002.

[15] M.C. Jaeger, G. Rojec-Goldmann, and G. Mühl, “QoS Aggregation
for Service Composition Using Workflow Patterns,” Proc. Eighth
Int’l Enterprise Distributed Object Computing Conf., pp. 149-159,
Sept. 2004.

[16] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and H.
Chang, “QoS-Aware Middleware for Web Services Composition,”
IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311-327, May 2004.

[17] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping
Performance and Dependability Attributes of Web Services,”
Proc. IEEE Int’l Conf. Web Services, 2006.

[18] M.C. Jaeger, G. Mühl, and S. Golze, “QoS-Aware Composition of
Web Services: An Evaluation of Selection Algorithms,” Proc. On
the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, pp. 646-661, Nov. 2005.

[19] L. Baresi, S. Guinea, and P. Plebani, “Policies and Aspects for the
Supervision of BPEL Processes,” Proc. 19th Int’l Conf. Advanced
Information Systems Eng., pp. 340-354, 2007.

842 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 4, JULY/AUGUST 2012

[20] A. Charfi and M. Mezini, “AO4BPEL: An Aspect-Oriented
Extension to BPEL,” World Wide Web, vol. 10, no. 3, pp. 309-344,
2007.

[21] A. Erradi, P. Maheshwari, and V. Tosic, “Policy-Driven Middle-
ware for Self-Adaptation of Web Services Compositions,” Proc.
ACM/IFIP/USENIX Int’l Conf. Middleware, pp. 62-80, 2006.

[22] A. Mosincat and W. Binder, “Transparent Runtime Adaptability
for BPEL Processes,” Proc. Sixth Int’l Conf. Service-Oriented
Computing, pp. 241-255, 2008.

[23] O. Moser, F. Rosenberg, and S. Dustdar, “Non-Intrusive Monitor-
ing and Service Adaptation for WS-BPEL,” Proc. 17th Int’l Conf.
World Wide Web, pp. 815-824, 2008.

[24] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.

[25] IR.50.4.0-2G/2.5G/3G Roaming, GSM World, 2009, http://
www.gsmworld.com/documents/IR50_4_0.pdf, 2009.

[26] Business Process Modeling Notation (BPMN) Specification, Version
1.0, Object Management Group—Business Process Management
Initiative, http://www.bpmn.org/, 2006.

[27] VieDAME Project Website, Oliver Moser, http://viedame.omoser.
com, 2010.

[28] C.-L. Hwang and K. Yoon, Multiple Attribute Decision Making
Methods and Applications. Springer-Verlag, 1981.

[29] An Architectural Blueprint for Autonomic Computing, IBM Corpora-
tion, http://www-01.ibm.com/software/tivoli/autonomic/pdfs/
AC_Blueprint_White_Paper_4th.pdf, 2006.

[30] ActiveBPEL Engine, Active Endpoints, http://www.active-
endpoints.com/, 2007.

[31] Apache ODE, Apache Software Foundation, http://ode.
apache.org/, 2011.

[32] JBoss Application Server, Red Hat, http://www.jboss.org, 2007.
[33] D.C. Luckham, The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[34] Esper, EsperTech, http://esper.codehaus.org, 2009.
[35] Esper Performance Wiki, EsperTech, http://docs.codehaus.org/

display/ESPER/Esper+performance, 2009.
[36] JSR 223: Scripting for the Java Platform, SUN Microsystems, http://

www.jcp.org/en/jsr/detail?id=223, 2009.
[37] ExpandoMetaClass Domain Specific Language with Groovy, Codehaus,

http://groovy.codehaus.org/ExpandoMetaClass+Domain-
Specific+Language, 2009.

[38] E. Gamma, R. Helm, R. Johnson, and J. Vlissidesi, Design Patterns,
Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1994.

[39] Hiberante ORM, Red Hat, http://www.hibernate.org, 2007.
[40] Quartz, OpenSymphony, http://www.opensymphony.com/

quartz/, 2007.
[41] Spring Framework, Interface21, http://www.springframework.org,

2007.
[42] JBoss Seam, Red Hat, http://www.jboss.org, 2007.
[43] EditArea JavaScript Source Code ed., Christophe Dolivet, http://

www.cdolivet.com/index.php?page=editArea, 2009.
[44] JBossWS, RedHat, http://www.jboss.org/jbossws/, 2007.
[45] LoadRunner, HP, https://h10078.www1.hp.com/cda/hpms/

display/main/hpms_content. jsp?zn=bto&cp=1-11-126-
17^8_4000_100__, 2009.

[46] SoapUI, Eviware, http://www.soapui.org/, 2009.
[47] L. Baresi and S. Guinea, “A Dynamic and Reactive Approach to

the Supervision of BPEL Processes,” Proc. First India Software Eng.
Conf., pp. 39-48, 2008.

[48] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-to-
End Support for QoS-Aware Service Selection, Binding and
Mediation in VRESCo,” IEEE Trans. Services Computing, vol. 3,
no. 3, pp. 193-205, July-Sept. 2010.

[49] N. Delgado, A.Q. Gates, and S. Roach, “A Taxonomy and Catalog
of Runtime Software-Fault Monitoring Tools,” IEEE Trans. Soft-
ware Eng., vol. 30, no. 12, pp. 859-872, Dec. 2004.

[50] Apache Synapse, Apache Software Foundation, http://ws.
apache.org/synapse/, 2007.

[51] L. Baresi, S. Guinea, and L. Pasquale, “Self-Healing BPEL
Processes with Dynamo and the JBoss Rule Engine,” Proc. Int’l
Workshop Eng. of Software Services for Pervasive Environments,
pp. 11-20, 2007.

[52] D. Ardagna and B. Pernici, “Adaptive Service Composition in
Flexible Processes,” IEEE Trans. Software Eng., vol. 33, no. 6,
pp. 369-384, June 2007.

[53] F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and S.
Dustdar, “An End-to-End Approach for QoS-Aware Service
Composition,” Proc. IEEE 13th Int’l Conf. Enterprise Distributed
Object Computing, 2009.

[54] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints,” ACM Trans.
Web, vol. 1, no. 6, pp. 1-26, 2007.

[55] M. Alrifai and T. Risse, “Combining Global Optimization with
Local Selection for Efficient QoS-Aware Service Composition,”
Proc. 18th Int’l Conf. World Wide Web, pp. 881-890, Apr. 2009.

[56] M. Alrifai, D. Skoutas, and T. Risse, “Selecting Skyline Services for
QoS-Based Web Service Composition,” Proc. 19th Int’l Conf. World
Wide Web, Apr. 2010.

Oliver Moser is currently working toward the
PhD degree at the Vienna University of Tech-
nology. His research interests include service-
based systems and complex event processing.
He has more than 8 years industrial experience
in designing and implementing large-scale ser-
vice and provisioning platforms for telecommu-
nication enterprises. He is a student member of
the IEEE. More information can be found at
http://www.omoser.com.

Florian Rosenberg received the PhD degree in
computer science in June 2009 from the Vienna
University of Technology. He is a research staff
member at the IBM T.J. Watson Research
Center in New York. His research interests
include service-oriented computing, cloud com-
puting, and software engineering. Currently, he
works on virtual image construction and compo-
sition in cloud computing to simplify software
deployment and configuration. More information

can be found at http://www.florianrosenberg.com.

Schahram Dustdar is a full professor of
computer science with a focus on Internet
technologies heading the Distributed Systems
Group, Institute of Information Systems, Vienna
University of Technology (TU Wien). From 2004-
2010 he was an honorary professor of informa-
tion systems in the Department of Computing
Science at the University of Groningen (RuG),
The Netherlands. He is a senior member of the
IEEE. He has been an ACM distinguished

scientist since 2009. More information can be found at http://www.
infosys.tuwien.ac.at/Staff/sd.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MOSER ET AL.: DOMAIN-SPECIFIC SERVICE SELECTION FOR COMPOSITE SERVICES 843

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

