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We present a comprehensive framework for identifying influential factors of
business process performance. In particular, our approach combines monitoring
of process events and Quality of Service (QoS) measurements with dependency
analysis to effectively identify influential factors. The framework uses data mining
techniques to construct tree structures to represent dependencies of a key
performance indicator (KPI) on process and QoS metrics. These dependency trees
allow business analysts to determine how process KPIs depend on lower-level
process metrics and QoS characteristics of the IT infrastructure. The structure of
the dependencies enables a drill-down analysis of single factors of influence to
gain a deeper knowledge why certain KPI targets are not met.

Keywords: process performance monitoring; service composition; KPI; QoS; data
mining; decision tree

1. Introduction

Enterprise systems typically implement core business processes by using different
design methods and process technologies. This requires an effective alignment
between business processes and IT systems to be competitive on the market. Business
process management (BPM) provides a set of methods, techniques and tools for
modeling, executing and analysing business processes of an organization (Weske
2007). Recently, BPM has been supported by an integrated set of tools supporting
the process of lifecycle in an unified manner. Thereby, business analysts create a
process model, which is then refined by IT engineers to an executable model. The
executable business process model is deployed to a process engine, which executes it
by delegating tasks to both humans and services. For example, business processes
can be modeled using BPMN (Business Process Modeling Notation) (OMG 2009)
and then mapped to WS-BPEL (Web Service Business Process Execution Language)
(OASIS 2007) for execution. Adopting WS-BPEL typically implies the service
oriented architecture (SOA) paradigm (Papazoglou et al. 2007). In SOA, core
functionality is exposed as services and orchestrated into composite services, which
constitute the enterprise business processes.
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Monitoring of business goals and timely measurement of business process
performance are important aspects of the BPM lifecycle. Such goals are typically
expressed by defining a number of key performance indicators (KPIs) and their
target values. For example, in a purchase order process an example KPI could be the
‘order fulfillment lead time’ with a target value ‘less than 3 days’. Whenever a KPI
does not meet its target value, a business analyst wants to know what when wrong,
and how to address the issue. This task is supported by business activity monitoring
(BAM) technology. It enables continuous, near real-time monitoring of processes
based on eventing (Wahli et al. 2007). However, in BAM the focus is currently set on
the ‘what’ rather than the ‘why’ question. BAM does not reveal the ‘hidden’ factors
that caused deviations from target KPI values. In this article, we specifically look a
two important factors. On the one hand we consider process performance metrics
(PPM), which define metrics based on process runtime data (Wetzstein et al. 2009),
e.g. ‘the number of orders which can be served from inhouse stock’. PPMs are on a
different level of granularity than KPIs. A KPI measures the success of the process as
a whole, while a PPM captures only a single facet of the process (which is usually not
interesting in isolation). On the other hand, we also take technical parameters, such
as quality of service (QoS), e.g. the availability of the process engine or the response
time of used Web services) into account. In sum, a very large number of possible
causes exists, and it is rarely obvious even to domain experts which of those possible
factors of influence is most important for business process performance, and what
dependencies exist between those factors. Unrevealing those dependencies in a
structured way increases a chance of detecting them, and subsequently trigger
corrective actions.

We propose a comprehensive end-to-end framework for monitoring and analysis
of the performance of business processes based on WS-BPEL. In particular, we use
dependency analysis, i.e. data mining based analysis of PPMs and QoS metrics, with
the goal of discovering the main factors of influence of process performance. These
factors are represented as easy-to-interpret decision trees (dependency trees). We
present the basic concepts of our analysis framework, and provide experimental
results based on a purchase order scenario. In addition, we identify cases where
dependency trees do not show all expected results, and explain strategies to deal with
these problems.

The rest of the article is organized as follows. Section 2 presents an illustrative
scenario for explaining the basic concepts and the core research issues addressed in
this article. Section 3 explains the main ideas of our framework for runtime
monitoring and dependency analysis. Section 4 details the monitoring of influential
factors followed by the description of the dependency analysis in Section 5. Section 6
describes the implementation of our prototype based on the scenario and presents
some experimental results. Section 7 discusses important related work and Section 8
presents some concluding remarks and highlights the most important future work.

2. Scenario

In this section, we present a scenario which will be used throught the remainder of this
article. Additionally, we have implemented and used this scenario for experimentation
purposes. The scenario consists of a customer, a reseller, its two suppliers, a banking
service, and a shipping service. The reseller offers certain products to its customers. It
holds certain products in stock, and orders others directly from suppliers. The customer
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sends a purchase order request with details about the required products and required
amounts to the reseller. The latter checks whether all products are available in stock. If
some products are not, they are ordered externally. Note that the second external
supplier is contacted only if the first (preferred) supplier is not able to deliver. If the
purchase order can be satisfied, the customer receives a confirmation, otherwise the
order is rejected. The reseller waits, if necessary, for the supplier to deliver the needed
products. When all products are available, the warehouse packages them and hands
them over to shipping. The shipping service delivers the order to the customer, and
finally notifies the reseller about the shipment. In parallel to packaging and shipment,
the payment subprocess is performed. The customer decides on the payment style and
specifies its payment details. The reseller contacts a banking service which authorizes
the customer, and credits the agreed amount. From the point of view of the reseller, a
typical KPI is the order fulfillment lead time, i.e. duration from receiving the customer
order until shipment is received by the customer, as defined in the supply chain
operations reference model (SCOR)1.

Assuming that this process is implemented using WS-BPEL, the KPI order
fulfillment lead time is potentially influenced by a number of technical and non-
technical factors, such as the response time and availability of Web services, the
customer, or the ordered products. We have provided an (incomplete) list of
potential factors of influence for the KPI from our scenario in Table 1. Factors
include simple facts from the business process instance, such as a customer identifier,
a product type or information about which branch of a process has been executed
(e.g. whether the alternative branch ‘ordering from external suppliers’ needed to be
executed). All these facts are accessible from the process instance, therefore, no
calculation formula is required. However, PPMs on a different level of granularity
are also possible, such as the duration of a whole subprocess. Finally, we have given
a few simple examples of QoS metrics, which may influence the KPI performance.
For example, the availability of the process engine or single services that the process
relies on, or the response time of these services. A full discussion of possible QoS
metrics is out of scope of this article. Additionally, we have also provided the
possible range for these example influential factors. Generally, factors of influence
can either be nominal values (i.e. take on one of a finite number of predefined
values), or numeric values (e.g. integer or real values).

However, it is not obvious which of these factors actually influence the KPI most,
and what the structure of the dependencies between sfactors is (i.e. some factors are
in turn influenced by others, such as the duration of the payment subprocess which is

Table 1. Potential influential factors of KPI performance.

Name Type Calculation formula Range

Customer ID PPM {Customer1, Customer2,. . . }
Product type PPM {Product1, Product2,. . . }
Shipped from stock PPM {true, false}
Duration of payment subprocess PPM tend, tbegin [0;?]
Availability process engine QoS #available

#checks
[0; 1]

Availability banking service QoS #available
#checks

[0; 1]

Response time banking service QoS tend, tbegin [0;?]
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influenced by service response times). These questions are not answered sufficiently
by today’s BAM dashboards – they can only provide status information about KPIs,
but do not allow further analysis of the main causes for violations. Our approach
supports this kind of analysis, which we refer to as dependency analysis (i.e. the
analysis of dependencies of KPIs to PPMs and QoS metrics). Furthermore, more
detailed information about internal dependencies between factors of influence can
be gained by drill-down analysis, i.e. recursively applying dependency analysis to
single factors of influence.

3. Framework overview and methodology

In this section, we give an overview of our framework and the corresponding
methodology for monitoring and analysing factors of influence of business process
performance. Our approach can be can be described in terms of four phases: design,
deployment, monitoring and analysis phase.

In the design phase, the user specifies one or several KPIs for an already defined
executable WS-BPEL process. KPIs are key metrics with target values which are to
be measured for this process. For the specified KPIs, in the next step a set of further
metric definitions (PPMs and QoS metrics) needs to be specified. To support this step
we provide tooling to semi-automatically generate a number of potential metrics for
monitoring. The metric definitions model will serve as input to KPI dependency
analysis later in the analysis phase. All metric definitions together constitute the
process metrics definition model (PMDM).

In the the deployment phase, the PMDM model is deployed to the monitoring
infrastructure and monitoring is started. The monitoring infrastructure consists of
several components: an event listener in the BPEL engine which publishes resource
events during process execution, a QoS monitor which publishes QoS events as result
of QoS measurement, and a CEP engine which recursively aggregates those events to
complex events thus calculating PPMs and QoS metrics. PPMs and QoS metrics are
saved in a metrics database and displayed in related dashboards.

When the user is interested in performing a dependency analysis of KPIs, the
process analyser gathers the needed metric data from the metrics database, prepares
it for mining, and uses a decision tree algorithm to generate a dependency tree, which
depicts the influential factors of the KPI. Outcomes of the analysis are again
displayed in the dashboard to the users of the system, who can use this resulting
information to optimize the business process.

A high-level overview of the main components which support the described
methodology is given in Figure 1. In our framework we distinguish three different
layers.

In the process runtime layer, a WS-BPEL business process is defined and
executed. It orchestrates a set of Web services, and is exposed itself as a Web service
to service requesters. In the monitoring layer, information about the running business
process and the services it interacts with is collected to monitor KPIs, PPMs, and
QoS metrics. During process execution time, the QoS monitor and WS-BPEL
process engine publish events to a publish/subscribe channel which the monitoring
tool is subscribed to. The PPM and QoS metric values are calculated, stored in the
metrics database for later analysis, and displayed in the BAM dashboard. In the
process analysis layer, the collected metrics information is analysed by the process
analyser component.
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4. Monitoring of influential factors

The goal of monitoring in our approach is (1) to obtain KPI values and check
whether they meet specified targets and (2) to provide metrics for factors which could
potentially influence the KPI performance and are thus input to later dependency
analysis. In this phase we deal with two challenges:

. Monitoring both on process level and service level: The business processes we
focus on in this paper are implemented as WS-BPEL service compositions
running on top of a SOA. Such processes have several dependencies on IT
components and their QoS characteristics, which potentially influence business
process performance. This is why we support in our approach both PPMs and
QoS metrics and their correlation (Sections 4.1 and 4.2). supported by different
monitoring mechanisms.

. Semi-automated creation of metric definitions: One input to our approach is a
comprehensive set of metrics which should be monitored. Even if the user
knows which metrics she wants to monitor, the manual creation of these
definitions can be a tediuos and error-prone task. Therefore, there is a need for
a semi-automated approach to creation of potentially interesting

. metrics (Section 4.3), which supports the user by proposing metrics which may
be important to consider for monitoring.

Figure 1. Monitoring and analysis framework overview.
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4.1. Monitoring of process performance metrics

PPMs are metrics defined based on runtime events of processes. In the following, we
focus on runtime events of WS-BPEL service orchestrations, but in general our
approach supports arbitrary events of information systems participating in the
business process. We distinguish between resource events and complex events.
Resource event definitions are specified based on the process instance resources and
complex events are defined (recursively) based on other events. Those events are used
for PPM calculation.

4.1.1. WS-BPEL resource events

A resource event definition specifies the following three elements:

. Monitored resource: First, we have to specify which process resource should be
monitored and for which state of the resource the event should be published.
The resource is identified by pointing to the corresponding WS-BPEL
elements. Monitored resources we are interested in are the instances of the
WS-BPEL process, activity, scop, and variable. The state models (e.g. started,
completed, terminated, compensated and corresponding transitions) for these
resources are not standardized. In our work, we use the state models defined in
Karastoyanova et al. (2006).

. Process data: Optionally, one can specify which process data (defined as WS-
BPEL variable) is to be part of the event. The data is read when the event is
published.

. Target message queue or pub/sub topic: Finally, one has to specify a message
queue or a pub/sub topic to which the event is to be published.

Listing 1 shows a resource event definition for the OrderReceivedEvent resource
event. It is specified by pointing to the Receive PO activity in the reseller WS-BPEL
process model. The event is to be published when the corresponding activity is
completed. In addition, the event should contain the data from the purcha-
seOrder variable. It is published to the specified message queue. The resource
identification (specified in the monitoredResource element) will result at process
runtime in corresponding resource identifiers (i.e. process instance ID, ppid, and an
activity instance ID, aiid, which is needed if an activity is executed in a loop). These
identifiers are transported as part of the event, and are needed for event correlation.

Listing 1. Resource event definition.
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This resource event definition is deployed to an event listener, which receives
internal events by the process engine, filters only the events of the specified resource
and includes process data if needed. The listener then publishes the event to the
queue or topic, as specified in the definition.

4.1.2. Complex events and PPMs

Complex events are specified by correlating and aggregating existing events (resource
and complex events). Event correlation and aggregation is a well-known topic in the
area of complex event processing (CEP), and there are different languages available
for the specification of complex events (Luckham 2002). In our case, we have decided
to use the language of ESPER2, which is the CEP implementation we have used in
our prototype (Section 6.1). However, alternatively, any other language could be
used instead. Note that we use the term complex event for an event which results
from using a CEP statement over one or more events. We do not further distinguish
between more fine-grained meanings of complex, composite, and derived events as in
some other works.

A complex event definition specifies the following three elements:

. Consumed events: First, we have to specify the names of the source queue(s)
and/or topic(s) from which the events should be aggregated.

. Event aggregation statement: This is a CEP statement which correlates and
aggregates the consumed events to a new event. In case the created complex
event calculates a metric, the metric value is saved in the metricValue field of
the event.

. Target message queue or pub/sub topic: Finally, one has to specify a message
queue or a pub/sub topic to which the new event is to be published.

In Listing 2 we define a complex event OrderFulfillmentTimeEvent (lines 1–14),
which contains the corresponding metric value in the attribute metricValue. In
addition it contains the attribute unit and the process instance identifier. The metric
value is calculated by correlating two events already defined, namely OrderRe-
ceivedEvent (Listing 1) and ReceivedDeliveryNotificationEvent. These

Listing 2. Complex event for PPM computation.
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events are correlated based on the piid, and then their timestamps are
subtracted. The result event is published to the corresponding topic. Note that
obviously such a definition results in one result event per process instance, i.e. an
event stream. Finally, we can define the PPM OrderFulfillmentTimeMetric
(lines 16–22), which is calculated based on the corresponding previuosly defined
complex event. Complex event definitions are deployed to the CEP engine. The CEP
statement specified in the definition is registered in the CEP engine, the consumed
events needed are retrived from the queues or topics as specified. There is a special
listener for complex events for which a PPM has been defined. Such a listener
retrieves the complex events from the topic, stores the metric value in the metric
database and updates the dashboard view if needed. The record saved in the metric
database consists of the metric name, metric value and the corresponding resource
identifiers (piid and aiid).

4.2. Monitoring of QoS metrics

In our context, QoS can be measured in three different ways: (1) probing by a separate
QoS monitor, such as the one described in (Rosenberg et al. 2006), (2) instrumentation
of the WS-BPEL engine or (3) instrumentation of the WS-BPEL process (evaluating
QoS parameters using PPMs, e.g. response times of Web services can be estimated
through WS-BPEL activity durations). In our scenario implementation, we use an
external QoS monitor for measuring the availability of the process engine and partner
Web services of the WS-BPEL process. Response time is estimated based on the
duration of the corresponding WS-BPEL invoke activity.

4.2.1. QoS events

The QoS monitor polls the corresponding endpoints and emits QoS events which
contain information on the monitored services current availability. Listing 3 shows
the definition of a QoS event which is to be provided by the QoS monitor. We define
that the QoS monitor should poll the corresponding endpoint with a certain
testFrequencyPerMinute. The QoS monitor will thus emit 20 ProcessEnd-
pointAvailableEvents per minute specifying whether the process endpoint was
available to the specified queue.

4.2.2. Correlation of process events and QoS events

QoS events as defined above are not enough to evaluate the process instance
availability QoS metric. They do not contain information on process instances which

Listing 3. QoS event definition.
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have been running while the availability check has been performed. Thus, these
events have to be correlated with corresponding process events, in this case the start
and end (resource) event of a process instance. In Listing 4, we construct a new
complex event ProcessInstanceAvailableEvent which results from each
QoSEvent ProcessEndpointAvailableEvent (as defined above). The latter is
published while that process instance has been executed, namely between the WS-
BPEL resource events OrderProcessingStartedEvent and OrderProces-
singCompletedEvent. The resulting complex event ProcessInstanceAvai-
lableEvent now contains the piid of the process instance. It can be used for
calculating the availability metric for a process instance (not shown for space
reasons) by counting those events with available ¼ true and dividing that
number through all events. Note that while QoS metric calculations result in rather
long statements, they do not have to be written manually by the user, but can be
generated as will be explained in the next section.

4.3. Generation of metric definitions

The core of our approach is the availability of a meaningful and complete set of
PPM and QoS metrics for monitoring and analysis. Unfortunately, defining these
metrics manually is rather cumbersome and time-consuming. We have therefore
devised a rule-based approach to identify potential metrics in a semi-automated
manner. A human operator can then take over parts of or all metrics from this
generated temporary metric set, as well as define entirely new metrics.

Our general approach is to provide a number of rules, which identify elements of a
WS-BPEL process (such as invoke activities, branches or loops), extract some basic
information from the element (such as the endpoint or service name for invoke
activities) and generate one PPM or QoS metric definition per element. This is done by
filling an XML template with the information extracted from the element. We have
sketched a template for availability metrics in Listing 5. In this templates, variables are
indicated by [$]{... } (e.g. [$]{endpoint}). The concrete values for these variables
are retrieved from the WS-BPEL element. We used XML stylesheet transformations
(XSLT) to implement metric generation in our tool.

We currently support rules to generate the following metrics:

. For every WS-BPEL invoke activity we generate an availability metric (using
the template sketched in Listing 5).

. For every WS-BPEL invoke activity which is not part of a loop (i.e. which is
executed 0 or 1 times in every instance) we generate a metric representing the

Listing 4. Correlation of process and QoS events.
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execution time of the activity (i.e. the time between starting and finishing the
activity).

. For every WS-BPEL invoke activity which is part of a loop (i.e. which is
potentially executed several times in an instance) we generate a metric
representing the average execution time of the activity. Additionally, we
generate metrics representing the number of times the activity has been
executed in this instance, and the minimum and maximum execution time of
the activity.

. For every loop, we generate a metric representing the number of iterations in
this instance.

. For every branching activity, we generate a metric representing the branch that
has been executed.

. Finally, we generate a metric representing the callback time of every
asynchronous activity in the WS-BPEL process (e.g. the duration between
ordering via an external supplier and the callback from the supplier signaling
that the order has been shipped).

Each of these rules can be individually turned on or off. In addition, every
generated metric can be discarded after generation. However, please note that this
approach can only provide a partial list of metrics, since some domain-specific
metrics (e.g. a customer identifier) cannot be identified this way. These domain-
specific metrics still need to be provided by a human domain expert manually.

5. Analysis of influential factors

Dependency analysis uses historical process data to determine the most important
factors that dictate whether a process instance is going to violate its KPIs. The
output of dependency analysis is an easily visualizable model of the internal
dependencies of the business process. It identifies the most important factors of
influence of process performance. In our work, we generally use decision trees
(Witten and Frank 2005) as dependency model. We refer to these tree models as
dependency trees, because they represent the main dependencies of the business
process on technical and process metrics, i.e. the metrics which contribute ‘most
often’ to the failure or success of a process instance in respect to a KPI. Decision tree
classifiers are a standard technique for supervised learning (i.e. concepts are learned
from historical classifications, in our case dependency information is learned from
monitoring data). Decision trees use a ‘divide and conquer’ approach to learning
concepts. They iteratively construct a tree of decision nodes, each consisting of a test,
such as whether a given numerical attribute is smaller than a given threshold. Leaf

Listing 5. Availability metrics template.
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nodes in the tree typically represent a classification to a category. In our case, only
two such categories exist (KPI has been violated, or not), i.e. dependency trees are
binary decision trees. One big advantage of decision tree algorithms, espcially so in
our context, is their non-parametric nature. They need only a very limited set of
parameters (in the simplest case none) as input, and can therefore be expected to
provide useful results from the first run, without the need for extensive experiments
with different parameter sets, which we argue makes our approach suitable for
business analysts, who are generally no experts in data mining. However, please note
that in our apprach the used mining algorithms can still be customized by data
mining savy users, which may lead to better results in many cases.

Our main motivation for using decision trees is that they are easy to depict
graphically. This is important if results should be presented to non-experts. An
additional benefit is that many well-researched algorithms to construct decision trees
from data exist, such as the C4.5 (Quinlan 1993) or the alternate decision tree, ADTree,
(Freund and Mason 1999) algorithms. For tree learning, we use 10-fold cross
validation, which is a standard technique in data mining to avoid having to split the
input data into training, test and validation sets. Additionally, cross validation allows
to estimate the classification error of the decision tree. The classification error enables
the business analyst to measure the quality of the dependency tree, i.e. how exact the
tree represents the actual structure of real-world dependencies.

5.1. Creation of dependency trees

The general process of dependency analysis is a 4-step-procedure. We have depicted
these steps in Figure 2.

The analysis consists of the following steps:

(1) The first step is KPI selection and optional adjustment of analysis
parameters, which is done by a human business analyst. She chooses a
KPI (from the PMDM) she wants to analyse. Optionally she can adjust the
following parameters (or alternatively use default values): the KPI target
value (and corresponding predicate); the analysis period and/or how many
process instances in that period should be analysed (e.g. last 1000); a subset
of metric types from the PMDM which should be used as potential influential
factors (default value: all); the decision tree algorithm which should be used.

(2) The second step is creation of the training set, which is performed
automatically as follows: for each process instance which has begun and
finished in the analysis period, the corresponding PPM and QoS metric
values are gathered from the metrics database and used as attributes of a
record of the training set. The predicate of the KPI metric value is evaluated
and according to the result, the record is classified as ‘KPI fulfilled’ or ‘KPI
violated’. An example training set is shown in Figure 2 (in Step 2). Each row
(record) contains the metric values (representing potential influential factors)
of a process instance, whereby the last column specifies whether the KPI
target value predicate (order fulfillment time 5target value) is fulfilled or
violated for that process instance.

(3) The third step is decision tree learning. Basically, in this step a decision tree is
trained from the training set using a standard decision tree algorithm like
C4.5 or ADTree.

Enterprise Information Systems 89

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
e
t
z
s
t
e
i
n
,
 
B
r
a
n
i
m
i
r
]
 
A
t
:
 
0
7
:
2
0
 
1
4
 
D
e
c
e
m
b
e
r
 
2
0
1
0



F
ig
u
re

2
.

D
ep
en
d
en
cy

a
n
a
ly
si
s.

90 B. Wetzstein et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
e
t
z
s
t
e
i
n
,
 
B
r
a
n
i
m
i
r
]
 
A
t
:
 
0
7
:
2
0
 
1
4
 
D
e
c
e
m
b
e
r
 
2
0
1
0



(4) Finally, in the fourth step the resulting tree is displayed in the dashboard as
outcome of the dependency analysis.

As a result of these four steps, a dependency tree is constructed as shown in
Figure 2 and displayed in the dashboard. In this simple example, the most influential
factor is the response time of the banking service, since a delay in this service
generally leads to a violated KPI. However, even if the banking service’s response
time is acceptable (below 210 time units in this example), the KPIs are still often
violated if the order is placed by the customer with the ID ‘1234’. Business analysts
can use the dependency tree to learn about the ‘hot spots’ of the process, and inform
themselves about possible corrective actions if a process underperforms. Considering
the example in Figure 2, a business analyst can take the corrective action to replace
the ‘Banking Service’ with a service with better response time, if such a service is
available. However, note that the ‘first’ metric used in the dependency tree is not
necessarily the most important one – to find out about the most important metrics
one needs to look at the whole tree and find out which decisions lead to the most
failed process instances. For metrics which have been identified as important factors
of influence, a further ‘drill-down’ analysis can be performed. For this, one of the
factors (e.g. the response time of the banking service) is selected, a target value is
specified and another dependency analysis is launched. This identifies the more
detailed dependencies that influence this specific factor of the overall process
performance (e.g. one could find out that way that the response time of the banking
service strongly depends on the type of the banking account).

6. Experimentation

This section describes our prototype implementation of the framework and
experimental results based on the example scenario.

6.1. Implementation and experiment setup

Our prototype uses Apache ODE as business process execution engine. ODE is open
source software, and implements the WS-BPEL standard for Web service
orchestration. We have implemented an ODE event listener for publishing of WS-
BPEL resource events as described in Section 4.1. The events are published by the
listener to JMS-based queues and topics. We chose to use the open source Apache
ActiveMQ3 JMS implementation. We have also implemented a simple QoS monitor,
which can non-intrusively check the availability of Web services through periodic
polling. It publishes QoS events to corresponding JMS queues or topics (as described
in Section 4.2). Complex event processing has been implemented based on ESPER.4

Complex event definitions (Section 4.1) are deployed as ESPER statements. An
inbound and an outbound JMS adapter have been implemented for access to JMS
queues and topics. For storing metrics in the database, a special event listener has
been implemented which subscribes only to those complex events which are used for
metric calculation. Metrics are saved in a standard MySQL5 database. Because of
the limited size of the scenario we did not use advanced features such as clustering or
load balancing. The dashboard component is implemented as an standalone swing
application. The process analyser is a standalone Web service, which is accessible
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over a RESTful Web service interface. The foundation of this component is the
WEKA toolkit6, which implements many high-quality data mining schemes,
including the decision tree based classifiers that we used in this article. We have
transparently integrated WEKA into our process analyser component using the
WEKA Java API.

We have implemented the scenario from Section 2 as a WS-BPEL process
interacting with six Web services. Additionally, we provide a simple Java client for
this process. The Web services have also been implemented in Java, using the Apache
CXF7 framework, and simulate certain influential factors. For example, the user can
configure the response time, availability, and outputs of a service over time and
dependent on business process data.

For experimentation, we have deployed all these components on a single desktop
PC, mainly to prevent external influences such as network latency to influence our
experimentation results. However, the scenario is designed in such a way that
physically distributed experiments can be run without any modifications.

6.2. Experimental results

The experimentation has been performed using the purchase order process already
discussed in Section 2. We define Order Fulfillment Lead Time as the KPI to be
analysed and create a set of 31 potential influential factors. The corresponding metric
definitions have been generated as described in Section 4.3. In addition, we have
manually defined several domain-specific metrics such as product types, number of
ordered products, customer type, order in stock, etc.

The experimentation is performed as follows. We create a setting which simulates
certain influential factors by configuring the behaviour of services invoked by the
process. We then trigger the execution of process instances using a test client. During
process instance execution, the previously specified metrics are measured and saved in
the metrics database. Finally, we perform the dependency analysis on the KPI and
compare the result of the created dependency tree with the configured influential metrics.

The first configuration we have created simulates the following factors: (1) the
warehouse service returns a negative result for certain product types based on given
probabilities; this should have a major impact on process duration as some products
have to first be ordered from suppliers; (2) supplier 1 has in average a higher than
expected supplier delivery time; (iii) average shipment delivery time is high in relation
to the overall duration of the process instance, and can vary. On the basis of this
configuration, we expect the dependency tree to show that the KPI is mainly
influenced by product type, supplier 1 delivery time, and shipment delivery time. Other
metrics (in particular response times of services) also influence the KPI value, but in
a marginal way.

The generated decision tree is shown in Figure 3. It has been generated using J48
(the WEKA implementation of C4.5) based on 400 monitored process instances. It
shows that when shipment delivery time was above 96 time units all process instances
lead to KPI violations (‘red’), otherwise the outcome of the KPI depends further on
the order in stockmetric, then again on shipment delivery time, supplier 1 delivery time
and finally response time supplier 1. The leaves of the tree show the number of
instances which are classified as ‘red’ or ‘green’. That means, for example, that 267
process instances (out of 400) had the shipment delivery time below 96 time units and
order in stock ¼ true, and met the KPI target value.
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The dependency tree shows two of the three influential factors we have configured
and expected (shipment delivery time and supplier 1 delivery time). Interestingly, the
third factor, the product type, is not shown. Instead order in stock has been chosen by
the decision tree algorithm. The reason for this is that product type directly influences
order in stock, which again influences the KPI value; as both metrics influence the KPI
value in the same way, only one of them is shown in the tree. This particular result is
unsatisfactory, as it hides the root cause, namely product type in this case.

The user can deal with this problem using two approaches: (1) he can drill-down
and request the analysis the order in stock metric. A second tree is generated which
explains when ordered products are not in stock as shown in Figure 4. This tree now
clearly shows how the unavailability of ordered products in stock depends on product
type and ordered product quantity. (2) The user can also remove the order in stock
metric temporarily from the analysed metric set. Now, the algorithm will search for
alternative metrics which classify the instances in a similar way as order in stock.

Figure 3. Generated tree for order fulfillment time.

Figure 4. Generated tree for order in stock.
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Note however that while in the general analysis case, the user does not need to have
any special domain knowledge on metric dependencies, in the described two
approaches, we assume that the user suspects that there could be further
dependencies behind a lower-level metric.

Another available analysis option is to selectively choose the set of potential
influential factors to be analysed. Assuming that we are interested in how the KPI
depends on the availability of services and infrastructure. In that case, we reduce the
potential influential factor metric set to just the availability metrics. To evaluate this,
we have created a configuration which simulates that the warehouse service and the
shipment service are unavailable with the probability of 15%. The WS-BPEL process
contains fault handlers when trying to invoke partner services; in case of
unavailability it waits for a certain time frame and retries. Thus, the unavailability
of a service will impact the overall duration of the process. (measured based on
process events) for each invoke-activity which ‘include’ the retries in case of
unavailability (ii) the warehouse availability check (order in stock) returns now a
negative result only with the probability of 5%; (iii) shipment delivery time is still very
influential in relation to the duration of other activities of the process. On the basis
of this configuration, we expect the KPI to be mainly influenced by the availability of
the warehouse and shipment Web services, order in stock and shipment delivery time.
The generated decision tree is shown in Figure 5. It is a J48 tree based on 1000
instances. It clearly shows that (only) availability of the shipment and warehouse
Web services has an impact on the KPI value, as expected.

Table 2 shows more detailed results of the experimental results. We have
experimented with two algorithms, J48 and ADTree, and generated trees for
different numbers of process instances (100, 400, 1000). The results show that the
ADTree algorithm produces bigger trees than J48 (third column: number of leaves
and nodes) for the same number of instances. However, it also reaches a higher
precision (last column: correctly classified instances). The experiments further show
that the trees are getting bigger with the number of process instances. For example,
J48 generated for 400 instances a tree with 11 nodes, for 1000 instances a tree with 18
nodes, while the precision improved only by 1%. In particular, when the tree gets

Figure 5. Generated tree for dependency of KPI on availability of IT infrastructure.
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bigger, factors are shown in the tree which have only marginal influence and thus
make the tree less readable; the column ‘Displayed Metrics’ shows how many distinct
metrics are displayed in the tree. To improve the readability, i.e. make the tree more
compact, we have experimented with several parameters available for the algorithms.
In general, the usage of parameters has lead to only marginal changes in our
experiments (for example, J48 -U with no pruning). The only parameter that turned
out useful to reduce the size of the tree was ‘reduced error pruning’ (J48 -R) (Witten
and Frank 2005). Another option, in the case of too many undesirable (marginal)
metrics, is to simply remove those metrics from the analysed metric set and repeat
the analysis. Finally, both algorithms show very similar results concerning the
displayed influential metrics. Typically there is only one or at most two (marginal)
metrics which differ. Both algorithms have displayed two of the three expected
metrics (always preferring order in stock over product type as explained above).
Finally, concerning the analysis duration, in our setting on a standard laptop
computer a decision tree generation based on 1000 instances takes about 30.

Overall, these experiments show that the generated trees contain the expected
influential metrics in a satisfactory manner and produce suitable results ‘out of the
box’. Therefore, we argue that the approach is suitable for non-IT personnel, even
though this claim has yet to be verified through real-life evaluation. Concerning the
influential factors displayed in the tree, we have identified two problems: (1) the user
should be aware that the tree might hide some influential factors if there are ‘multi-
level’ dependencies between metrics (product type influences order in stock which
again influences order fulfillment time). In that case, further analysis (drill-down) of
lower-level metrics may help to find further influential factors, (2) when the tree gets
bigger it contains often some metrics which have only marginal influence and thus
only ‘blur the picture’. In that case one can try to tune the algorithm by using, for
example, reduced error pruning, or one can simply remove those marginal metrics
from the analysed metric set and repeat the analysis. Both techniques often lead to
more satisfactory results.

7. Related work

There are several approaches that deal with monitoring of service compositions.
They differ mostly in monitoring goals, i.e. what is monitored, and the monitoring
languages and mechanisms. Baresi and Guinea (2005) deal with monitoring of WS-
BPEL processes focusing on functional runtime validation. The goal is to detect
partner services which deliver unexpected results concerning functional expectations.
Barbon et al. (2006) describe a monitoring approach for WS-BPEL processes which

Table 2. Experimental results.

Instances Algorithm Leaves/nodes Displayed metrics Correctly classified (%)

100 J48 4/7 4 95.0
100 ADTree 11/16 4 98.0
400 J48 6/11 4 97.8
400 ADTree 17/26 5 99.0
1000 J48 11/18 6 98.8
1000 J48 -R 6/11 4 97.9
1000 J48 -U 13/22 9 99.2
1000 ADTree 19/28 6 99.4
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supports run-time checking of assumptions under which the partner services are
supposed to participate in the process and the conditions that the process is expected
to satisfy. The approach also supports collecting statistical and timing information,
i.e. process performance metrics. Both approaches have in common that they
concentrate on (functional) monitoring of WS-BPEL processes and use proprietary
languages for expressing complex monitored properties. In contrast to those
approaches, we focus on non-functional aspects and support both monitoring of
process performance metrics and QoS metrics, and their correlation using a general-
purpose CEP language. IBM’s BAM approach described by Wahli et al. (2007) is
similar to ours and it also supports monitoring based on arbitrary events in addition
to WS-BPEL events and also evaluation of process metrics, however it does not
support integration of QoS data and dependency analysis.

When it comes to the analysis aspect, most closely related to our work is iBOM, a
platform for business operation management developed by HP (Castellanos et al.
2005). It allows users to define and monitor business metrics (not focused on WS-
BPEL processes), perform intelligent analysis on them to understand causes of
undesired metric values, and predict future values. Our approach is different in that
we focus on SOA-based WS-BPEL processes, and explicitly integrate PPMs and QoS
metrics for analysis purposes. We deal only with decision trees, but provide detailed
experimental results. Another approach which explains dependencies among
different impact factors is described by Bodensta et al. (2008). This approach
focuses on dependencies of SLAs of the overall composition on SLAs of used base
services, and analyses reasons for SLA violations. In contrast to our approach, the
dependency relations and the impacts factors are identified at design time, and then
later compared with monitoring results during runtime. The approach supports only
analysis of response time and cost metrics. In our approach, we construct the
dependency model based on monitoring results using data mining and support
arbitrary metrics, in particular data-based metrics.

Another popular approach is process mining which includes several techniques
that operate on event logs provided by information systems and perform different
kinds of analysis on them (van der Aalst et al. 2004). Process discovery techniques
aim at deriving a process model out of event logs when there is no explicit process
model a priori (van der Aalst et al. 2004). In that context, process mining deals also
with discovering performance bottlenecks by analysing idle times vs. working times
and flow times on the discovered process model. That kind of analysis yields
information which in our approach is obtained by monitoring metrics as specified in
the metrics model. Besides just obtaining basic process metrics, another approach in
process mining is process completion time prediction. Dongen et al. (2008) present
an approach to cycle time prediction of process instances based on regression
techniques. The approach takes into account the partial trace of the process instance
until the prediction takes place and the history logs of past process instances. Our
approach can also be extended towards prediction as we have shown by Leitner et al.
(2009). Thereby, the prediction is performed during process execution time at
previuosly specified check points in the BPEL process model using neural networks.

8. Conclusions

In this article we have presented an integrated monitoring and analysis framework
for KPIs of SOA-based business processes. Our monitoring approach supports
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monitoring of business process performance in terms of both process performance
metrics and QoS metrics. We have shown how WS-BPEL resource events and QoS
events are modeled and how they can be correlated and aggregated using CEP
technology. We have also explained how metric definitions can be generated semi-
automatically. The analysis part of the framework is based on decision trees and
enables analysing the main factors that influence the business process and make it
violate its performance targets. We have presented experimental results which show
that in general the generated decision trees provide explanations in a satisfactory
manner, but in some cases further analysis has to be done. In that respect, we have
shown how drill-down functionality and analysis based on different metric sets can
influence the analysis result.

Our future work includes extending the framework towards making use of
dependency analysis in the area of process adaptation. Currently, dependencies
are presented towards the human business analyst, who is then incorporating
the gained knowledge back into the process manually, e.g. by exchanging
service bindings. We currently think about a more automated mechanism, which
uses rule sets and predefined reactions to incorporate dependency knowledge back
into the WS-BPEL process in a more automated way. One example would be
service selection: if the dependency model of a process shows that the process
outcome is sensitive to the response time of a service, then an expensive
high-quality service is selected; if the response time is no important factor of
influence a cheaper service is selected. Finally, we still need to test our approach
in real-world settings, to further validate the claims that we have stated in this
article.
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